[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



842 名前:132人目の素数さん [03/11/23 21:48]
II Ex. 3.19 (a) の解答

Y は有限個のアフィン開集合 U_i の合併となる。
f の 制限 f_i: f^(-1)(U_i) → U_i を考える。
Z_i = Z ∩ f^(-1)(U_i) は f^(-1)(U_i) の可構部分集合である。
f_i(Z_i) = f(Z) ∩ U_i であるから、f(Z) ∩ U_i が U_i の
可構部分集合であれば、f(Z) が Y の可構部分集合であることが
いえる。即ち、Y をアフィンスキームと仮定してよい。

補題(>>839)より、アフィンスキーム X' と
有限型の射 g: X' → X が存在し、g(X') = Z となる。
h = fg とすれば、h(X') = f(Z) である。
h は有限型だから、X はアフィンスキームとし、X = Z と
仮定してよい。

補題(>>840)より、Y の任意の既約閉集合 F に対して、
f(X) ∩ F が F において稠密なら、
f(X) ∩ F は F の空でない開集合を含むことを示せばよい。
F を被約な閉部分スキームとみなす。
T = X x F とおく。ここで、X x F は
Y 上のファイバー積である。
g: T → F を射影とする。
T は位相空間として f^(-1)(F) と見なせ、
g は f の制限と見なせる。
従がって、g(T) = f(X) ∩ F である。
以上から、Y は既約で、f は支配的と仮定してよい。

X を既約成分 X_i に分解する。ある X_i に対して f(X_i) は
Y で稠密である。これより、X も既約と仮定してよい。
さらに、X, Y をそれぞれの被約化 X_red, Y_red に置き換える
ことにより X と Y は被約と仮定してよい。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef