[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



693 名前:132人目の素数さん [03/11/12 06:31]
>>692 の続き
【Hartshorne II Ex. 3.7 の解答】
X の生成点をξ、Y の生成点をηとする。
まず、f^-1(η) = {ξ} を示す。
ξ'∈f^-1(η)とし、Y の空でないアフィン開集合 U' = Spec B をとる。η∈U
だからξ, ξ'∈f^-1(U')である。f^-1(U') の空でないアフィン開部分集合
V' = Spec A で、ξ'の近傍となっており、かつ A が of finite type over B
であるものをとって f': V' → U' を考えると、f'は明らかにgenerically finite
であり支配的であるから、「アフィンの場合」よりf'は finite。付随する準同型
B → A を考えれば、ξはAの零イデアル、ηはBの零イデアルに対応しており、
ξ' に対応する A の素イデアルを考えれば、補題から ξ' = ξ となる。
次に、f が有限型であるから f^-1(U') の有限アフィン開被覆 V_i = Spec A_i
(各V_i は空でないとする)が存在して各 A_i は B 上 of finite type。
上と同様の議論により f_i: V_i → U'は finite。
finite 射は特に閉写像(Ex. 3.5. (b) >>535)だから、f: V → U' も閉写像である。実際、S を V の閉集合とすると、f(S) = f(∪(V_i∩S)) = ∪f_i(V_i∩S)
であり右辺は閉集合の有限和だから f(S) は閉集合。
今、W := ∩V_i とおく。i が有限だから W は空でない開集合であり、f が閉写像
であることから f(V - W) は U' の閉集合。また、f^-1(η) = {ξ} ⊆ W である
から、η は f(V - W) に入らず、よってf(V - W)≠U'。
U ⊆ U' - f(V - W) なる空でないアフィン開集合をとると、
f^-1(U) ⊆ f^-1(U' - f(V - W)) = V - f^-1(f(V - W)) ⊆ W。
よって、f^-1(U) は f_i^-1(U) (i はどれでもよい)と見なせるから、f_i が
finite であることから、f^-1(U) は affine であり f^-1(U) → U は finite
となる。以上。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef