[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



692 名前:132人目の素数さん [03/11/12 06:30]
>>591
>>491のHartshorne II Ex. 3.7 の解答。
よく考えてやってみました。こんどはハズしてないといいんだが・・・

まず次の補題を示す。
【補題】
A を整域、B をその部分整域とし、A は B 上整とする。このとき、
p ∈ Spec A、p ∩ B = 0 ⇒ p = 0。
証明: p = 0 とし、x∈p-{0} をとる。x は B 上整であるから
x^n + b_1*x^(n-1) + ... + b_n = 0、b_1, ..., b_n ∈ B
となる次数最低の多項式をとれる。
b_n = -x(x^(n-1) + b_1*x^(n-2) + ... + b_(n-1)) ∈p
であり、b_n = 0 とすると x^(n-1) + b_1*x^(n-2) + ... + b_(n-1) = 0
となり次数が最低であることに反するから b_n ≠ 0。よって b_n ∈ p ∩ B ≠ 0。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef