[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 08/06 01:17 / Filesize : 673 KB / Number-of Response : 1068
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学・数学隣接分野(含むガロア理論)20



677 名前: such that
∀x(x∈W↔∀I(Φ(I)→x∈I)). (*)
For existence, we will use the Axiom of Infinity combined with the Axiom schema of specification.
Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set
W={x∈I:∀J(Φ(J)→x∈J)}
– i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set. This clearly satisfies the hypothesis of (*), since if x∈W, then
x is in every inductive set, and if
x is in every inductive set, it is in particular in I, so it must also be in W.

For uniqueness, first note that any set that satisfies (*) is itself inductive, since 0 is in all inductive sets, and if an element
x is in all inductive sets, then by the inductive property so is its successor. Thus if there were another set
W′ that satisfied (*) we would have that
W′⊆W since
W is inductive, and
W⊆W′since
W′is inductive. Thus W=W′.
Let ω denote this unique element.

This definition is convenient because the principle of induction immediately follows: If
I⊆ω is inductive, then also
ω⊆I, so that I=ω.■
(引用終り)
以上
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<673KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef