1 名前:132人目の素数さん [2022/08/13(土) 16:51:12.04 ID:d42KNd2H.net] 前スレが1000近くなったので、新スレを立てる 前スレ 箱入り無数目を語る部屋2 https://rio2016.5ch.net/test/read.cgi/math/1629325917/ (参考) 時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋 純粋・応用数学(含むガロア理論)8 https://rio2016.5ch.net/test/read.cgi/math/1620904362/401 時枝問題(数学セミナー201511月号の記事) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis (Denis質問) I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. (Pruss氏) The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate. (Huynh氏) If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. つづく
818 名前:132人目の素数さん mailto:sage [2022/10/12(水) 11:38:08.07 ID:TRiiI02m.net] >>741 >つまり、100個の代表を考えるなら、 >∪K^n (n∈N)から100個の元を選べば済む >だから、 >選択公理を使わないで済ますことができる まさしく選択公理を使わずに時枝記事と同等のゲームを記述したのが>>581-583 。 しかもスレ主お得意の多項式環・ベキ級数環まで忠実に再現している。 その >581-583 をいつまでもスルーし続けているのがスレ主という構図。
819 名前:132人目の素数さん mailto:sage [2022/10/12(水) 11:40:42.13 ID:TRiiI02m.net] >>741 >「発散する非正則分布で、有限のd1,d2,・・d100 を使うと、ランダム性(無作為性)が成り立たない。 > だから、確率計算になってない」 "無限小" が云々とかいうスレ主の詭弁は>>727-734 で完全に論破したので、これでは困ったスレ主は、 再び「時枝記事は非正則分布を使っている」という詭弁に里帰りすることにしたようである。 だが、それも無駄である。時枝記事で使われている分布は ・ {1,2,…,100} 上の一様分布 なのであって、 ・ {d1,d2,…,d100} 上の一様分布 ではないからだ。スレ主は後者だと勘違いしている。実際は前者である。 そして、前者は {1,2,…,100} という固定された有界集合である。 つまり、「発散する非正則分布」なんぞ時枝記事では使われてないのである。 そもそも、スレ主の屁理屈を使えば、>>581-583 でも回答者の勝率はゼロになってしまう。 しかし、>581-583では回答者の勝率は 99/100 以上である。
820 名前:132人目の素数さん mailto:sage [2022/10/12(水) 11:47:59.54 ID:TRiiI02m.net] >>741 >つまり、非正則分布の代表例として、自然数N={1,2,・・,n,・・}を考える >これは明らかに、中央値や平均値が無限大に発散しているし、分散も発散している 時枝記事では、そのような非正則分布は使ってない。 >一方、有限のd1,d2,・・d100は >中央値や平均値も有限で、分散も有限だから ほらね、ここがスレ主の勘違い。スレ主は {d1,d2,…,d100} 上の一様分布が使われていると勘違いしている。 そうじゃないだろ。時枝記事で使われている分布は {1,2,…,100} 上の一様分布だろ。日本語が読めないのか? >両者は、確率論の視点では全く別物 両者が別物なのはその通り。そして、時枝記事ではスレ主が提唱するところの前者(非正則分布)を使ってないし、 スレ主が提唱するところの後者({d1,d2,…,d100} 上の一様分布)も使ってない。 つまり、時枝記事では、スレ主が提唱する前者・後者のどちらも使ってない。 スレ主は前者と後者が別物だと指摘しているが、時枝記事では前者も後者も使ってないのだから、 両者が別物だからって時枝記事とは何の関係もない。 時枝記事で使われてるのは {1,2,…,100} 上の一様分布にすぎない。
821 名前:132人目の素数さん mailto:sage [2022/10/12(水) 12:04:33.50 ID:TRiiI02m.net] 「100枚の封筒」の設定における確率計算(>>690-697 )を例にとる。>690の設定のもとで、 この設定を記述する確率空間は>691のように定義できて、「回答者が勝利する」という事象は A = { (d_1,d_2,…,d_100, i)∈Ω|d_i≦max{d_j|j≠i, 1≦j≦100} } (>692) で定義される。よって、回答者の勝率は P(A) と書ける。>693 で書いたように、 d=(d_1,…,d_100)∈N_100 を固定するごとに、A の d切片 A_d は A_d = {i∈I|(d,i)∈A} = {i∈I|d_i≦max{d_j|j≠i, 1≦j≦100} } と表現できて、i ∈ I={1,2,…,100} の中で d_i>max{d_j|j≠i, 1≦j≦100} を満たす i は高々1つ。 よって、確率空間(I, pow(I), η)において自明に η(A_d) ≧ 99/100 が成り立つ。 すると、フビニの定理により、P(A) ≧ 99/100 が直ちに従う(>>693 )。 スレ主はまず、上記の確率計算(>>690-693 )を完璧に理解す