581 名前:コース 原書名 Basic Category Theory 著者名 斎藤 恭司 監修 土岡 俊介 訳 丸善出版 2017年01月 <arxiv公開> https://arxiv.org/abs/1612.09375 Basic Category Theory Tom Leinster [v1] Fri, 30 Dec 2016 03:02:01 UTC (210 KB) Journal reference: Cambridge Studies in Advanced Mathematics, Vol. 143, Cambridge University Press, 2014 Download:PDF https://arxiv.org/pdf/1612.09375
P2 (圏論の‘universal’の説明で、the universe of sets と使っている) Properties such as this are called ‘universal’ because they state how the object being described (in this case, the set 1) relates to the entire universe in which it lives (in this case, the universe of sets). The property begins with the words ‘for all sets X’, and therefore says something about the relationship between 1 and every set X: namely, that there is a unique map from X to 1.
P168 (toposの説明で、‘universe of sets’と使っている) For instance, a topos can be regarded as a ‘universe of sets’: Set is the most basic example of a topos, and every topos shares enough features with Set that one can reason with its objects as if they were sets of some exotic kind. On the other hand, a topos can be regarded as a generalized topological space: every space gives rise to a topos (namely, the category of sheaves on it), and topological properties of the space can be reinterpreted in a useful way as categorical properties of its associated topos. (引用終り)
英文で、universeの箇所を引用したが、‘universe of sets’とかで、 ”relates to the entire universe in which it lives (in this case, the universe of sets).”とされている 望月IUTの‘universe’は、明らかに、Leinster氏の書いている意味とは違う気がする もっとも、Leinster氏も‘universe’の厳密な定義を、書いていない(多分、‘universe’の厳密な定義を必要としないからでしょう (P2とP168との間でuniversalは使うが、‘universe’は使わない))
>>527 追加 >宇宙際Teichmuller理論 >[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF NEW !! (2020-12-23) >https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf
Mutually Alien Copies に関連しそうなところを、下記に引用すると 1)N ・ h “=〜” h N be a fixed natural number > 1 2)qN “=〜” q 3)“alien” is that of its original Latin root, i.e., a sense of abstract, tautological “otherness”. とか、そのまま読むと、望月ワールド全開で、NHKスペシャル見ているから「同じものを別と見て、かつ同一視する」でしたか、ああこのことかと思いました 普通に読むと、読めないでしょうね ” Gaussian integral に繋げないんだろう”と好意的に読むと、気持ちは分かりますがね(これ数学として成り立つ?w) ここ、説明の一つの山でしょね
(引用開始) P3 Introduction Let N be a fixed natural number > 1. Then the issue of bounding a given nonnegative real number h ∈ R?0 may be understood as the issue of showing that N ・ h is roughly equal to h, i.e., N ・ h “=〜” h [cf. §2.3, §2.4]. When h is the height of an elliptic curve over a number field, this issue may be understood as the issue of showing that the height of the [in fact, in most cases, fictional!] “elliptic curve” whose q-parameters are the N-th powers “qN ” of the q-parameters “q” of the given elliptic curve is roughly equal to the height of the given elliptic curve, i.e., that, at least from the point of view of [global] heights, qN “=〜” q [cf. §2.3, §2.4].
In order to verify the approximate relation qN “=〜” q, one begins by introducing two distinct - i.e., two “mutually alien” - copies of the conventional scheme theory surrounding the given initial Θ-data. Here, the intended sense of the descriptive “alien” is that of its original Latin root, i.e., a sense of abstract, tautological “otherness”.
These two mutually alien copies of conventional scheme theory are glued together - by considering relatively weak underlying structures of the respective conventional scheme theories such as multiplicative monoids and profinite groups - in such a way that the “qN ” in one copy of scheme theory is identified with the “q” in the other copy of scheme theory. This gluing is referred to as the Θ-link. Thus, the “qN ” on the left-hand side of the Θ-link is glued to the “q” on the right-hand side of the Θ-link, i.e., qNLHS “=” qRHS [cf. §3.3, (vii), for more details]. Here, “N” is in fact taken not to be a fixed natural number, but rather a sort of symmetrized average over the values j2, where j = 1,...,l*, and we write l* def = (l ? 1)/2. Thus, the left-hand side of the above display {qj2LHS}j bears a striking formal resemblance to the Gaussian distribution. One then verifies the desired approximate relation qN “=〜” q by computing {qj2LHS}j - not in terms of qLHS [which is immediate from the definitions!], but rather - in terms of [the scheme theory surrounding] qRHS [which is a highly nontrivial matter!]. (引用終り) 以上
因みに、” the familiar Galois module “Z^(1)””とか合ったので下記を引用しておきます
(引用開始) P17 § 2.6. Positive characteristic model for mono-anabelian transport In this example, Galois groups, or ´etale fundamental groups, in some sense play the role that is played by tangent bundles in the classical theory - a situation that is reminiscent of the approach of the [scheme-theoretic] Hodge-Arakelov theory of [HASurI], [HASurII], which is briefly reviewed in §2.14 below. One notion of central importance in this example - and indeed throughout inter-universal Teichm¨uller theory! - is the notion of a cyclotome, a term which is used to refer to an isomorphic copy of some quotient [by a closed submodule] of the familiar Galois module “Z^(1)”, i.e., the “Tate twist” of the trivial Galois module “Z^”, or, alternatively, the rank one free Z^-module equipped with the action determined by the cyclotomic character. Also, if p is a prime number, then we shall write Z^=p for the quotient Z^/Zp. (引用終り) 以上
>>558 追加 > 3)“alien” is that of its original Latin root, i.e., a sense of abstract, tautological “otherness”. >とか、そのまま読むと、望月ワールド全開で、NHKスペシャル見ているから「同じものを別と見て、かつ同一視する」でしたか、ああこのことかと思いました >普通に読むと、読めないでしょうね
下記 フェセンコサーベイ (星の遠アーベル幾何学の進展 数学 vol74-No1 に紹介されている 文献の[6]) を読んでいる ”such gluing isomorphisms by applying various tautological Galois-equivariance properties of such gluing isomorphisms ” (google訳 そのような接着同型の様々なトートロジー的ガロア同変特性を適用することによるそのような接着同型 ) とか 出てくるんだよね(下記) 知らない人には、「え〜」てなものでしょうね まして、ショルツェ氏のように、直接IUTの論文を読むと、あまりの奇想天外の発想についていけず 自分なりの独自解釈をしてしまいそうですねw
(参考) https://ivanfesenko.org/?page_id=126 Research ? Ivan Fesenko https://ivanfesenko.org/wp-content/uploads/2021/10/notesoniut.pdf [L1] Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta functions, notes on the work of Shinichi Mochizuki, Europ. J. Math. (2015) 1:405?440 P15 Monoid-theoretic structures are of essential importance in IUT, since they allow one to construct various gluing isomorphisms. The use of Galois and arithmetic fundamental groups gives rise to canonical splittings objects arising from such gluing isomorphisms by applying various tautological Galois-equivariance properties of such gluing isomorphisms. The computation of the theta-link can be viewed as a sort of passage from monoid-theoretic data to such canonical splittings involving arithmetic fundamental groups, by applying generalised Kummer theory, together with various multiradial algorithms which make essential use of mono-anabelian geometry.
Buzzardが基調講演で取り上げるってことは 既に幾度も書かれていますよ。 今の数学界におけるIUT理論の評価はまさしく、 「一般には受け入れられていない」です。 arXiv:2112.11598v2 (18 Apr 2022) >A great example is Mochizuki’s claimed proof of the ABC >conjecture [Moc21]. This proof has now been published >in a serious research journal, however it is clear that it is >not accepted by the mathematical community in general.
Theorem 3.11 in Part III is somehow reinterpreted in Corollary 3.12 of the same paper in a way that relates to the kind of diophantine inequalities one wishes to prove. One constructs certain arithmetic line bundles of interest within each theatre, a theta version and a q-version (which at the places of bad reduction arises essentially from the q-parameter of the corresponding Tate curve), which give rise to certain theta and q-objects in certain (products of) Frobenioids: the theta and q-pilots. By construction the theta pilot maps to the q-pilot via the horizontal link in the log-theta lattice. One can then proceed and compare the log-volumes of the images of these two objects in the relevant objects constructed via the multiradial algorithm in Theorem 3.11.
>>527 追加 >宇宙際Teichmuller理論 >[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF NEW !! (2020-12-23) >https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf P6 Acknowledgements: The author wishes to express his appreciation for the stimulating comments that he has received from numerous mathematicians concerning the theory exposed in the present paper and, especially, his deep gratitude to Fumiharu Kato, Akio Tamagawa, Go Yamashita, Mohamed Sa¨?di, Yuichiro Hoshi, Ivan Fesenko, Fucheng Tan, Emmanuel Lepage, Arata Minamide, and Wojciech Porowski for the very active and devoted role that they played both in discussing this theory with the author and in disseminating it to others. []
>>575 >Theorem 3.11 in Part III is somehow reinterpreted in Corollary 3.12 of the same paper in a way that relates to the kind of diophantine inequalities one wishes to prove. One constructs certain arithmetic line bundles of interest within each theatre, a theta version and a q-version (which at the places of bad reduction arises essentially from the q-parameter of the corresponding Tate curve), which give rise to certain theta and q-objects in certain (products of) Frobenioids: the theta and q-pilots. By construction the theta pilot maps to the q-pilot via the horizontal link in the log-theta lattice. One can then proceed and compare the log-volumes of the images of these two objects in the relevant objects constructed via the multiradial algorithm in Theorem 3.11.
P1 初期の歩み 学位を取得した 1992 年夏から 2000 年夏までの私の研究の主なテーマは次の三つに分類することができます: (a) p 進 Teichm¨uller 理論:(1993 年〜1996 年) この理論は、複素数体上の双曲的リーマン面に対する Koebe の上半平面に よる一意化や、そのモジュライに対する Bers の一意化の p 進的な類似と見る こともでき、また Serre-Tate の通常アーベル多様体に対する標準座標の理論の双曲曲線版と見ることもできる。詳しくは、 A Theory of Ordinary p-adic Curves や An Introduction to p-adic Teichm¨uller Theory をご参照下さい。 (b) p 進遠アーベル幾何:(1995 年〜1996 年) この理論の代表的な定理は、「劣 p 進体」(= p 進局所体上有限生成な体の部 分体)上の相対的な設定において、双曲的曲線への任意の多様体からの非定数 的な射と、それぞれの数論的基本群の間の開外準同型の間に自然な全単射が存在するというものである。詳しくは、 The Local Pro-p Anabelian Geometry of Curves をご参照下さい。 (c) 楕円曲線の Hodge-Arakelov 理論:(1998 年〜2000 年) この理論の目標は、複素数体や p 進体上で知られている Hodge 理論の類似 を、数体上の楕円曲線に対して Arakelov 理論的な設定で実現することにある。
ショルツェ氏ぼレビューのURLは、スレのテンプレの>>14に、入れてある(下記) (>>14より、IUTに対する批判的レビュー。和訳は、google訳) https://zbmath.org/07317908 Mochizuki, Shinichi Inter-universal Teichmuller theory. I: Construction of Hodge theaters. (English) Zbl 07317908 Publ. Res. Inst. Math. Sci. 57, No. 1-2, 3-207 (2021). Reviewer: Peter Scholze (Bonn)
(原文) More formally, the central claim in this series of papers is Corollary 3.12 in part III. In the fourth part, this somewhat abstract statement is shown to imply the ABC conjecture over general number fields. Unfortunately, the argument given for Corollary 3.12 is not a proof, and the theory built in these papers is clearly insufficient to prove the ABC conjecture. (和訳) この一連の論文の中心的な主張は、パートIIIの結果3.12です。第4部では、このやや抽象的なステートメントが、一般的な数値フィールドに対するABC予想を暗示していることが示されています。残念ながら、Corollary 3.12に与えられた議論は証明ではなく、これらの論文で構築された理論は、ABC予想を証明するには明らかに不十分です。
(原文) Finally, let me briefly summarize the content of the individual papers. In parts II and III, with the exception of the critical Corollary 3.12, the reader will not find any proof that is longer than a few lines; the typical proof reads “The various assertions of Corollary 2.3 follow immediately from the definitions and the references quoted in the statements of these assertions.”, which is in line with the amount of mathematical content. (和訳) 最後に、個々の論文の内容を簡単に要約します。パートIIとIIIでは、重要な結果3.12を除いて、読者は数行より長い証拠を見つけることができません。典型的な証明は、「系2.3のさまざまなアサーションは、これらのアサーションのステートメントで引用された定義と参照からすぐに続きます。」と読みます。これは、数学的な内容の量と一致しています。 (引用終り)