P168 (toposの説明で、‘universe of sets’と使っている) For instance, a topos can be regarded as a ‘universe of sets’: Set is the most basic example of a topos, and every topos shares enough features with Set that one can reason with its objects as if they were sets of some exotic kind. On the other hand, a topos can be regarded as a generalized topological space: every space gives rise to a topos (namely, the category of sheaves on it), and topological properties of the space can be reinterpreted in a useful way as categorical properties of its associated topos. (引用終り)
英文で、universeの箇所を引用したが、‘universe of sets’とかで、 ”relates to the entire universe in which it lives (in this case, the universe of sets).”とされている 望月IUTの‘universe’は、明らかに、Leinster氏の書いている意味とは違う気がする もっとも、Leinster氏も‘universe’の厳密な定義を、書いていない(多分、‘universe’の厳密な定義を必要としないからでしょう (P2とP168との間でuniversalは使うが、‘universe’は使わない))