- 1 名前:132人目の素数さん [2022/01/15(土) 21:40:30.08 ID:so1VKQTS.net]
- dx とか dy って微積で出るけど、この明確な意味って何だ?
微少増分だとすると、大学初級のεδ論法でそんな曖昧なコトは排除されたのでは? dy/dx が分数ではないとされるけど、分数のように計算したりするし… 微分形式だという話もあるが、微分形式の本を読んでも「これが微分形式だ!」なんて やらないで、例によって天下り的に「こういう性質があるのが微分形式だ!」なんて言って 根底に潜むだろう思想を隠蔽するしw ※前スレ https://rio2016.5ch.net/test/read.cgi/math/1575816681/
- 161 名前:132人目の素数さん [2022/01/22(土) 09:17:44.09 ID:iWu+1cUG.net]
- ビブンケイシキガーって誰よ
そんな奴おらんよ?
- 162 名前:132人目の素数さん [2022/01/22(土) 10:56:14.74 ID:IwcYTa+Q.net]
- >>159
その人の懸念が何なのか不明確すぎて誰も答えられまいよ
- 163 名前:132人目の素数さん [2022/01/22(土) 12:24:22.53 ID:UVCje5B3.net]
- >>158
>>147のどこに「解析概論」の話が出てるの?
- 164 名前:132人目の素数さん [2022/01/22(土) 12:24:53.15 ID:UVCje5B3.net]
- >>160>>162
それはお前が馬鹿なだけ 質問の意図は明瞭
- 165 名前:132人目の素数さん [2022/01/22(土) 12:27:00.57 ID:UVCje5B3.net]
- 実際>>130は答えてるじゃないか(笑)
- 166 名前:132人目の素数さん mailto:sage [2022/01/22(土) 13:30:20.13 ID:rjqBadwf.net]
- コミュ力が足りないんじゃないないのか?
- 167 名前:132人目の素数さん mailto:sage [2022/01/22(土) 14:47:06.23 ID:ZAKe07xD.net]
- 劣等感婆ともう一人ヤバいやついないか?
- 168 名前:132人目の素数さん [2022/01/22(土) 14:51:18.22 ID:x205BXVe.net]
- >>130
開部分多様体を取るとコンパクトでなくなるから、各R^nの測度を取り替えたときまでは分からないな(分からないというか、議論の範囲外)
- 169 名前:132人目の素数さん [2022/01/22(土) 14:53:31.27 ID:iD0HdcE9.net]
- >>168
積分をするときに使う1の分割の各サポートはコンパクトにできるから、同じ議論でいけるのでは?
- 170 名前:132人目の素数さん [2022/01/22(土) 15:01:30.13 ID:kmtUzQci.net]
- で、問題はLebesgue測度以外の測度でも、変数変換したらJacobi行列式がでてくんの?
って話
- 171 名前:132人目の素数さん [2022/01/22(土) 15:07:31.61 ID:EvvVK1vl.net]
- 測度のpush forwardというのがあってだな
重積分の変数変換公式はその特別な場合
- 172 名前:132人目の素数さん [2022/01/22(土) 15:44:18.95 ID:gukP0VNl.net]
- pull backでは?
- 173 名前:132人目の素数さん [2022/01/22(土) 15:47:14.39 ID:gukP0VNl.net]
- あ、いやなんでもない
- 174 名前:132人目の素数さん [2022/01/22(土) 16:16:45.93 ID:rSXcab0w.net]
- Wikipedia読んでも、具体的にどう対応するのかイマイチ掴めない
https://en.m.wikipedia.org/wiki/Pushforward_measure たとえば D = {(x, y) | x^2 + y^2 ≦ 1} として x = r cosθ y = r sinθ と変数変換したときの ∫ _D dxdy = ∫_[0, 1]×[0, 2π] rdrdθ では、どうなってるん?
- 175 名前:132人目の素数さん [2022/01/22(土) 16:32:58.26 ID:+B+HT00f.net]
- dx = cosθdr - rsinθdθ
dy = sinθdr + rcosθdθ dx∧dy = ( cosθdr - rsinθdθ ) ∧ ( sinθdr + rcosθdθ ) = - rsinθdθ ∧ sinθdr + cosθdr ∧ rcosθdθ = - rsinθsinθdθ∧dr + rcosθcosθdr∧dθ = rsinθsinθdr∧dθ + rcosθcosθdr∧dθ = rdr∧dθ wikipediaで勉強するとかあり得ん
- 176 名前:132人目の素数さん [2022/01/22(土) 16:34:02.42 ID:IwcYTa+Q.net]
- >>164
ハイハイどもすんませんな 明確なら 微分形式の定義や操作が 変わるかも知れないと 思ったわけを説明してね
- 177 名前:132人目の素数さん [2022/01/22(土) 16:36:39.79 ID:mFLKbH+b.net]
- >>175
こいつは馬鹿なのか
- 178 名前:132人目の素数さん [2022/01/22(土) 16:37:08.72 ID:IwcYTa+Q.net]
- >>165
それは>>58への回答であって>>122の意味不明な懸念 >多様体上の積分における変数変換公式は、外微分と外積代数の性質から来ていて、それが上手いこと重積分の変数変換公式と整合している >もし、R^nの測度としてLebesgue測度以外をとったら、微分形式側の定義や操作を修正しなくて済むのかどうか知りたい への回答では無い
- 179 名前:132人目の素数さん [2022/01/22(土) 16:37:47.65 ID:mFLKbH+b.net]
- >>178
意味わからないのはお前の頭が悪いからだよ
- 180 名前:132人目の素数さん [2022/01/22(土) 16:37:52.82 ID:IwcYTa+Q.net]
- >>177
あんた かき回したいだけならどっか行ってくれないかな
- 181 名前:132人目の素数さん [2022/01/22(土) 16:40:38.44 ID:mFLKbH+b.net]
- >>180
話の流れを理解できていないのはお前
- 182 名前:132人目の素数さん [2022/01/22(土) 16:41:42.26 ID:IwcYTa+Q.net]
- >>170
コレなら明確 変数変換した先の測度を元の測度を送った物として定義するなら ヤコビアン出てくるのは理の当然
- 183 名前:132人目の素数さん [2022/01/22(土) 16:43:41.75 ID:Njw87jxp.net]
- >>182
それはどうして?
- 184 名前:132人目の素数さん [2022/01/22(土) 16:51:03.95 ID:fsCyphlD.net]
- >>182
Lebesgue測度に対しても、変数変換にJacobi行列式が出てくることは、全く自明ではないと思うのだが その議論が書いてある参考文献教えてくれ
- 185 名前:132人目の素数さん [2022/01/22(土) 17:08:49.83 ID:IwcYTa+Q.net]
- 送った先の測度が元の測度にヤコビアンを掛けた物と一致しているからこそ
積分の変数変換になるからだよ だから理由も何も 定義そのものと言えるアホらしい状況
- 186 名前:132人目の素数さん [2022/01/22(土) 17:18:11.38 ID:twNHdfr4.net]
- >>185
kwsk
- 187 名前:132人目の素数さん [2022/01/22(土) 17:28:04.90 ID:05rIUjyz.net]
- >>185
繰り返しスマン 少なくともLebesgue測度に限っても、変数変換にJacobianが出てくることは全く自明ではないと思うのだが、そういう議論をしている教科書があるなら教えてくれ
- 188 名前:132人目の素数さん [2022/01/22(土) 18:13:20.93 ID:05rIUjyz.net]
- >>185
何度もすみません。 普通の微分積分の教科書で、変数変換公式の証明を「定義そのもの」で済ませているものは無いと思います。 たしかに微分積分の教科書はRiemann積分ですが、Lebesgue積分になったところで自明になるようなものでは無いと思います。 私の認識不足でしたらすみませんが、そういう議論をしている教科書があれば教えて下さい。お願いします
- 189 名前:132人目の素数さん mailto:sage [2022/01/22(土) 18:50:31.14 ID:WVP6yMrM.net]
- |(>>167)ャバィャッ…
0 )… 〥) ! ! | 0 …ヒェッ ;´д`) ャ゛ゥ゛ァ゛ィ゛ャ゛ッ゛ ! !) ガォルンャ… δδ
- 190 名前:132人目の素数さん mailto:sage [2022/01/22(土) 18:51:57.07 ID:WVP6yMrM.net]
- …コワィナァ…
…戸締り首都高…
- 191 名前:132人目の素数さん mailto:sage [2022/01/22(土) 18:56:43.35 ID:WVP6yMrM.net]
- ドのレス のコトゃろか…
コレガワカラナィ… …難問ゃな… 。◯ ゜
- 192 名前:132人目の素数さん [2022/01/22(土) 19:09:55.27 ID:1E9gPKAd.net]
- >>174
これよくわからないんですけど、変数変換と関係あるんですか? ないと思うんですけどどうなんでしょう? 測度空間(X1,Σ1,μ)を用いて、測度が未定義の可測空間(X2,Σ2)の測度f*μを新たに定義するという話ですよね? 変数変換の場合、どちらの空間にも測度は既に定義済みだと思います にしても、ビブンケイシキガーは本当役に立ちませんね グダグダ文句垂れてできることといえば脳死で変数変換の記号いじりだけじゃないですか
- 193 名前:132人目の素数さん [2022/01/22(土) 19:27:49.22 ID:S8j7c3Fh.net]
- >>185
お調べいただいている最中でしたらすみません。 何度もすみませんが、積分の変数変換にJacobi行列式が出てくることは、Lebesgue測度に限っても、全く自明なことではないと思います。 実際、微分積分の教科書では、変数変換公式を一般の場合に証明するのに多くのページを費やしています。学部1-2年でやる微分積分はRiemann積分ですが、Lebesgue積分になったからと言って、変数変換公式が自明になるとは思えません。 私が寡聞にして存じないだけでしたらすみませんが、そのような議論をしている文献があれば教えて下さい。
- 194 名前:132人目の素数さん mailto:sage [2022/01/22(土) 19:29:23.27 ID:iWu+1cUG.net]
- 教えない
- 195 名前:132人目の素数さん mailto:sage [2022/01/22(土) 19:35:23.08 ID:iWu+1cUG.net]
- すまん
>>194は>>192
- 196 名前:132人目の素数さん [2022/01/22(土) 19:35:25.83 ID:J1/WkiBO.net]
- これが多分ルベーグ測度以外だと変数変換がおかしくなることの具体例になると思います
•X(R,Σ,μ)を測度空間とする。 R:実数 Σ:ボレル集合 μ: μ(E)=μ_L{x∈E| 0≦x≦1}、E∈Σ ここで、μ_Lは通常のルベーグ測度 f:X→X、f(x)=x+1を考える C=[0,1]⊂Xとすると、f(C)=[1,2]⊂X このとき ∫_C dx=1、∫_f(C) dx=0 fのヤコビアンは1ですが、積分の値は一致していません
- 197 名前:132人目の素数さん [2022/01/22(土) 19:39:34.33 ID:S8j7c3Fh.net]
- >>196
なるほど
- 198 名前:132人目の素数さん [2022/01/22(土) 19:47:13.53 ID:S8j7c3Fh.net]
- Dirac測度
https://ja.m.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%A9%E3%83%83%E3%82%AF%E6%B8%AC%E5%BA%A6 δ_x(A) := 1 if x∈A, 0 otherwise を考えても、変数変換公式成り立たない例を作れますね!
- 199 名前:132人目の素数さん mailto:sage [2022/01/22(土) 20:01:37.81 ID:HqLLFG7c.net]
- 測度の方も変換するのでは?
- 200 名前:132人目の素数さん [2022/01/22(土) 20:05:15.43 ID:IwcYTa+Q.net]
- >>199
その通り >>196は積分の変数変換ではない
- 201 名前:132人目の素数さん [2022/01/22(土) 20:05:16.42 ID:+B+HT00f.net]
- ヨコだが“dfが測度を与える”というのはStieltjes積分の意味やろ
関数φ(x)が与えられたときBorel可測集合上の測度μ(φ:X)を μ( φ; (a,b) ) = f(b-0) - f(a+0) μ( φ; {a} ) = f(a+0) - f(a-0) で定めることができる そしてこの測度による積分を∫f(x)dφ(x) などと書く場合がある この場合のφは別に微分可能でなくても良いし、なんなら連続ですらなくてもよい、(むしろ連続でない場合にこそ真骨頂がある) しかし可微分である場合には ∫f(x)dφ(x) = ∫f(x)φ'(x)dx とかが成り立ったりしてる もちろんこの意味でのdφの解釈は大切だし数学科卒なら絶対理解してないとだめなやつではあるんだけどな しかし微分形式という解釈を押しのけて第一義的にこれとまでは言えないやろな
- 202 名前:132人目の素数さん [2022/01/22(土) 20:10:20.08 ID:J1/WkiBO.net]
- >>199
よくわからないんですけど、その測度の変換が常にヤコビアンになっているという主張なのではないですか?
- 203 名前:132人目の素数さん [2022/01/22(土) 20:19:47.61 ID:S8j7c3Fh.net]
- >>200
すみませんが、文献を示していただけないでしょうか?
- 204 名前:132人目の素数さん [2022/01/22(土) 20:27:22.31 ID:ULI7COT+.net]
- >>198の測度を使えば
∫_R dx = 1 x = 2y とおくと ∫_R dx ≠ ∫_R 2dy = 2
- 205 名前:132人目の素数さん [2022/01/22(土) 20:32:14.81 ID:J1/WkiBO.net]
- >>199
極座標の例では f:X→Y、(r,θ)→(x,y)では、(r,θ)における長方形Dが、(x,y)においてはバウムクーヘンの切れ端f(D)みたいなものに変換されますよね?X=Y=R^2 その測度間の変換は比例関係にあるというのが通常の変数変換の公式です μ_Y(f(D))=r*μ_X(D) μ_X、μ_YはX,Yの測度 >>196の例では f:X→Y、x→x+1によって、Xでの[0,1]区間CがYでの[1,2]区間f(C)へと移動しています X=Y=[>>196における(R,Σ,μ)] もし仮に、上の極座標と同様の関係が成り立つのであれば μ_Y(f(C))=0∝μ_X(C)=1となるはずです しかしそうではないということは、通常の常識は通用していないということですよね?
- 206 名前:132人目の素数さん [2022/01/22(土) 20:58:18.00 ID:J1/WkiBO.net]
- >>204
こちらの方がわかりやすいですね 通常の変換公式使うと答えが合いません
- 207 名前:132人目の素数さん [2022/01/22(土) 21:12:02.74 ID:kqlGdb+O.net]
- >>204
Mは1次元多様体 p∈M (U, φ)は、pを含む座標近傍Uで、U〜R、φ(p) = 0となるもの。 ω∈Ω^1(M)、ωはU上でf(x)dx、M\U上では0と表せるとする。fはなめらかな関数で、f(0)≠0とする。 Rの測度として、>>198のδ_0を取った場合を考える。 ∫_M ω = ∫_R f(x)dx = ∫_R f(x)dδ_0 = f(0) (V, ψ)は、pを含む別の開近傍で、V〜R、ψ(p) = 0。 V上でωはg(y)dy、M\V上では0と表されるとする。このとき、 ∫_M ω = ∫_R g(y)dy = ∫_R g(y)dδ_0 = g(0) よって、f(0) = g(0)。 U∩V上では、ψ○φ^(-1)(x) = 2xと表されるとする。 このとき、 ∫_R g(y)dy = ∫_R g(2x) 2dx = 2g(0) ≠ g(0)(矛盾) なるほど
- 208 名前:132人目の素数さん [2022/01/22(土) 21:12:49.47 ID:J1/WkiBO.net]
- よくよく考えたら、変数変換でヤコビアンが出るという事実が測度に依存するなんて当たり前でしたね
物理の人とかはdxdyとかを微小体積としてヤコビアン出してるわけです そうできるのは、dxを微小量として考えているからであって、微小変化量というのは明らかにルベーグ測度の考え方です
- 209 名前:132人目の素数さん [2022/01/22(土) 21:20:24.63 ID:jyfGByJ+.net]
- ・微分形式は体積(測度)とは独立
・Lebesgue測度とはたまたま一致する ことが示されたのでは?
- 210 名前:132人目の素数さん [2022/01/22(土) 21:25:52.12 ID:ZBzIPk+2.net]
- いや、
@ Lebesgue測度では、微小変化量の2次以降の部分は消える A その構造をたまたま代数的に実現できる道具があったので、それを微分形式の定義にした のでは?やはり微小変化量が本質。余接ベクトル場は方便
- 211 名前:132人目の素数さん [2022/01/22(土) 21:26:33.56 ID:S8j7c3Fh.net]
- どっちでもええのでは
- 212 名前:132人目の素数さん mailto:sage [2022/01/22(土) 21:28:35.43 ID:vMSo+2Nd.net]
- 厳密さを謳えるような和書の「カレント」の理論の教科書ってないの?。
- 213 名前:132人目の素数さん [2022/01/22(土) 21:33:59.84 ID:iWu+1cUG.net]
- >>210
逆ではないのかと思う すべては微分形式からはじまる
- 214 名前:132人目の素数さん [2022/01/22(土) 21:38:52.10 ID:J2mj5aKy.net]
- >>213
>>204で見たとおり、微分形式じゃルベーグ測度以外の積分と整合しないじゃん つまり、微分形式は特別な場合に上手くいくだけのただのツール
- 215 名前:132人目の素数さん [2022/01/22(土) 21:39:27.90 ID:J1/WkiBO.net]
- >>213
微分形式を使って>>204を説明してください
- 216 名前:132人目の素数さん mailto:sag [2022/01/22(土) 21:44:57.45 ID:iWu+1cUG.net]
- 多様体においては、微分形式と整合
しない測度は排除されるべきなのだよ
- 217 名前:132人目の素数さん mailto:sage [2022/01/22(土) 22:08:41.08 ID:HqLLFG7c.net]
- 微分形式での測度って体積要素だろ
ルベーグ測度に対応する体積要素が dx 他の測度は別の体積要素になる ディラック測度のような測度はカレントの理論が必要
- 218 名前:132人目の素数さん [2022/01/22(土) 22:12:09.88 ID:9Xp9ZnRc.net]
- 微分形式は関手性と座標変換によって特徴付けられるわけだから
座標変換を変えることによって、Lebesgue測度以外の測度に対しても、微分形式のように振る舞うベクトル束を構成できる?
- 219 名前:132人目の素数さん [2022/01/22(土) 22:18:15.78 ID:9Xp9ZnRc.net]
- (U, φ_U), (V, φ_V), (W, φ_W)を3つの座標近傍
φ_V○φ_U^(-1) =: φ_VUなどと書くことにして、 座標変換fに伴うJacobianに相当するものを∂fなどと書くことにすると U∩V∩W上で、 ∂φ_UW ∂φ_WV ∂φ_VU = 1 みたいな条件が必要になると思うけど
- 220 名前:132人目の素数さん [2022/01/22(土) 22:18:32.87 ID:J1/WkiBO.net]
- >>217
前半はそうじゃないと思いますよ ある体積要素でのあるサイクルの積分が実際のサイクルのルベーグ測度と一致するかどうかとは無関係に、微分形式である限り変数変換すればヤコビアン出てきちゃいますよね? 変数変換でヤコビアンが出るという性質は、測度に依存したものであることが先ほど示されたので、やはり微分形式と積分を両立させるには測度に依存した議論が必要になると思います >>218 何を言ってるのかわかりません 座標変換を変えるってなんですか? で変えるとなにがどう微分形式のようなベクトル束ができると言ってるのでしょうか
- 221 名前:132人目の素数さん [2022/01/22(土) 22:20:40.62 ID:9Xp9ZnRc.net]
- あとStokesの定理を成り立たせるためには、外微分も変えなきゃいかんね
- 222 名前:132人目の素数さん [2022/01/22(土) 22:32:40.23 ID:9Xp9ZnRc.net]
- @
n次元多様体Mに対して、次数付けられたベクトル空間 Ω(M) = Ω^0(M)⊕...⊕Ω^n(M) と、線形写像d: Ω^k(M) →Ω^(k+1)(M)が存在。 A 多様体の射f: M → Nに対して、引き戻しf*: Ω(N)→Ω(M)が存在 B 座標近傍(U, φ)上で、k次の成分がf(x)dxみたいに書けて、別の座標近傍(V, ψ)とそこでの表示g(y)dyを取ると、nCk次行列T(y)があって f(x)dx = T(y) g(y)dy をみたす(k = 0, 1, ..., n) 微分形式の場合は、dは外微分で、TはJacobi行列(から作られる行列)だったわけだが dとTを適切に選べば、ルベーグ測度以外でも多様体上の積分と同じ理論を作れるか? とりあえずは、Stokesの定理を成り立たせるのが目標
- 223 名前:132人目の素数さん [2022/01/22(土) 22:42:52.53 ID:9Xp9ZnRc.net]
- あと、de Rhamコホモロジーの類似もできるといい
だから d○d = 0 も要求
- 224 名前:132人目の素数さん [2022/01/22(土) 22:53:34.52 ID:J1/WkiBO.net]
- 難しいと思いますね
R上のディラック測度δ_0を考えます y=x+1として 1=∫[-1/2,1/2]dx≠∫[1/2,3/2]f(y)dy=0 fとしてなにを選んでもこうなってしまうので、少なくとも、Ω^1(M)の元dxをそのまま積分記号と解釈することは難しいのではないかと思います
- 225 名前:132人目の素数さん [2022/01/22(土) 23:20:34.91 ID:J1/WkiBO.net]
- >>217
よくよく考えたらこれでいい気がしてきました >>224の場合は、通常の測度と微分形式を用いて、ディラックのδ関数使って 1=∫[-1/2,1/2]δ(x)dx=∫[1/2,3/2]δ(y-1)dy=1 これでいいですもんね δ関数の正当性とか考え始めるとカレントが必要ってことなのでしょう であと問題になるのは、任意の測度を微分形式の言葉に書き直せるのかってところですけどそこらへんはどうなんでしょうか
- 226 名前:132人目の素数さん [2022/01/22(土) 23:29:45.51 ID:J1/WkiBO.net]
- というか違いますね
私なんか勘違いしてましたけど、多様体の測度と、チャートで映されたユークリッド空間の測度は別にしないといけないんですね 多様体上に変な測度を考えるときは、ルベーグ測度を用いたユークリッド空間上で非自明な体積形式を考えてそれに関するルベーグ測度を用いた積分を行えば良い ですが、この方法で全ての多様体上の測度を尽くせるかはよくわからないと
- 227 名前:132人目の素数さん [2022/01/22(土) 23:32:33.35 ID:PurIzGqx.net]
- 微分形式と全く同じく、たとえばMが2次元なら
Ω^0 = M上の関数 Ω^1 = M上の関数を係数としてdx, dyで張られる Ω^2 = M上の関数dxdyで張られる とすればよいのでは。 で、別のdx', dy'をとったときに dx = A(x', y')dx' + B(x', y')dy' dy = C(x', y')dx' + D(x', y')dy' dxdy = E(x', y')dx'dy' という座標変換が必要。 普通の微分形式の場合は、A, B, C, D, Eはヤコビ行列から決まった。 今回は、与えられた測度での積分の座標変換と整合するように定める。 あとは、ストークスやドラームを外微分dを適切に定義する必要がある。
- 228 名前:132人目の素数さん [2022/01/22(土) 23:37:53.42 ID:S8j7c3Fh.net]
- >>227
> ストークスやドラームを ストークスやドラームが成り立つように
- 229 名前:132人目の素数さん [2022/01/22(土) 23:41:22.74 ID:eorRLiVQ.net]
- ストークスを考えるには、境界上の積分が必要だから、R^nの測度というより
R, R^2, ..., R^n すべてに何らかの意味で一貫した測度が入ってなきゃいかんね
- 230 名前:132人目の素数さん [2022/01/22(土) 23:51:22.33 ID:S8j7c3Fh.net]
- そこはRの測度が最初にあって、その積測度で良さそう
- 231 名前:132人目の素数さん [2022/01/22(土) 23:57:16.57 ID:YwPImppC.net]
- まぁ自分の中で第一義に何をもつてくるのかは自由だわな
しかし理系の人間が話し合って、例えば何を最初に教えるかという議論をするなら話違ってくる もちろんその場合は微分形式一択やろ これだけ現代数学、現代物理学を学んでいく上で避けて通れない概念も中々ない まず微分形式と解釈した場合の主だった定理や公式を理解した上で、その上でイヤイヤこんな解釈もあると進のはいいやろけど そんな事考えるのはまず学部の数学一通り全部理解した後の話だよ
- 232 名前:132人目の素数さん [2022/01/23(日) 00:01:43.68 ID:t62VOHED.net]
- ディラック測度の積測度ってなに?
δ_a×δ_bは、 (a, b)を含むなら1、含まないなら0? 第一成分への射影がaを含む or 第二成分への射影がbを含むなら1、そうでなければ0?
- 233 名前:132人目の素数さん [2022/01/23(日) 00:05:07.84 ID:+7a+OQ6M.net]
- μ×λ(E×F) = μ(E)×λ(F)
- 234 名前:132人目の素数さん [2022/01/23(日) 00:05:15.16 ID:+7a+OQ6M.net]
- だから前者
- 235 名前:132人目の素数さん [2022/01/23(日) 00:11:37.91 ID:+7a+OQ6M.net]
- あと、測度に完備性を要求するなら、積取ったあとに完備化しないといけない
- 236 名前:132人目の素数さん [2022/01/23(日) 07:52:23.12 ID:7bYC0zD4.net]
- >>204,224
そうはならない x,yそれぞれに測度を勝手に導入して 微分形式だけ変換しても一致するわけないだろ 測度とは長さ面積体積などの計量の一般化なのだから それらが対応するように変換しなければ そもそも積分の変数変換とは呼ばないのだよ そんなの当たり前のことだ ディラック測度δ_0はディラックのδ関数と微分形式によって dδ_0(x)=δ(x)dxと解釈することはできる x=2yとするなら dδ_0(x)=δ(x)dx=δ(2y)d(2y)=(1/2)δ(y)2dy=δ(y)dy=dδ_0(y) よって f(0)=∫_Rf(x)dδ_0(x)=∫_Rf(2y)dδ_0(y)=f(0) x=y-1とするなら dδ_0(x)=δ(x)dx=δ(y-1)d(y-1)=δ(y-1)dy=dδ_1(y) f(0)=∫_Rf(x)dδ_0(x)=∫_Rf(y-1)dδ_1(y)=f(0) そもそも 変数変換で値が変わらないように測度が対応するからこそ積分の変数変換と呼ばれるのだよ x=gIy)という変数の対応でdx=g'(y)dyなのだから これで積分が変わらないように測度が対応するのが理の当然
- 237 名前:132人目の素数さん [2022/01/23(日) 08:01:43.75 ID:CTuxYQFj.net]
- この馬鹿の存在意義は何?
- 238 名前:132人目の素数さん [2022/01/23(日) 08:04:15.78 ID:7bYC0zD4.net]
- >>237
煽りたいんだろうけどつまんないから消えてくれないかな 自分の存在価値を認識していないからこそ居座ってるんだろうけど
- 239 名前:132人目の素数さん mailto:sage [2022/01/23(日) 08:06:30.88 ID:RG3eK+cf.net]
- >>236
それはどの本に書いてある?
- 240 名前:132人目の素数さん mailto:sage [2022/01/23(日) 08:07:49.14 ID:w3gTR0DZ.net]
- >>236
消えろ
- 241 名前:132人目の素数さん mailto:sage [2022/01/23(日) 08:19:57.48 ID:w3gTR0DZ.net]
- >>236
こいつのヤバさは、他人の書き込みを読まない上に、妄想全開の俺理論を自信満々に書いちゃうところ 誰も聞いてないのに唐突に言霊とか占星術とかの話を仕出すヤバい奴に似ている
- 242 名前:132人目の素数さん [2022/01/23(日) 08:35:53.88 ID:7bYC0zD4.net]
- >>241
下らない奴だな 感心するよ
- 243 名前:132人目の素数さん [2022/01/23(日) 08:43:43.43 ID:QtY3jn7V.net]
- >>236
話が噛み合ってない 野球の話をしているのに、「オフサイドというルールがある」とか言い出してるようなもん
- 244 名前:132人目の素数さん [2022/01/23(日) 08:47:05.37 ID:7bYC0zD4.net]
- >>225
>任意の測度を微分形式の言葉に書き直せるのか できるように書くことはできる ディラックのδ関数がまさにそれ F(D,f(x))=∫_Df(x)dF=∫_Df(x)F'dx みたいに書くだけ
- 245 名前:132人目の素数さん [2022/01/23(日) 08:49:23.26 ID:7bYC0zD4.net]
- >>243
アホかね 積分の変数変換で積分値が変わっちゃそりゃ変数変換とは呼ばない これが根本原理なのだよ 俺はただそれだけ言っているに過ぎない 測度の方が対応せねばならないってだけ
- 246 名前:132人目の素数さん [2022/01/23(日) 08:50:15.49 ID:OK3EArEI.net]
- >>245
自分が会話できてない自覚ある?
- 247 名前:132人目の素数さん [2022/01/23(日) 08:53:09.65 ID:tazSePYK.net]
- >>245
> アホかね 鏡に向かって言ってんのか?
- 248 名前:132人目の素数さん [2022/01/23(日) 09:01:27.36 ID:tazSePYK.net]
- "話が噛み合ってない"んじゃなくて、明確に"間違っている"んだよなあ……
- 249 名前:132人目の素数さん [2022/01/23(日) 09:08:59.36 ID:+7a+OQ6M.net]
- そもそも誰も
「変数変換で積分値が変わる」 なんて言っとらんがな
- 250 名前:132人目の素数さん [2022/01/23(日) 09:21:43.32 ID:7bYC0zD4.net]
- >>249
理解できて何より だから測度側が対応せねばならないわけ
- 251 名前:132人目の素数さん [2022/01/23(日) 09:24:15.91 ID:94fRbQFD.net]
- >>250
わかったから、もう書き込まないでね
- 252 名前:132人目の素数さん [2022/01/23(日) 09:25:20.35 ID:7bYC0zD4.net]
- はぁ
必要なら書き込むしそうでなければ書き込まないというだけ 当たり前の理の当然でしょ?
- 253 名前:132人目の素数さん mailto:sage [2022/01/23(日) 09:55:09.05 ID:gLQNC7ek.net]
- >>241
よほど悔しかったようだなw
- 254 名前:132人目の素数さん mailto:sage [2022/01/23(日) 11:09:23.39 ID:gsVb7mxT.net]
- |
0 ♪シツモンッチャマ!新スィィ彼ピッピ )ノ゛相性知リタィカラ… ) 2人の14星座… b 教ェテクラハィ♪クラハィ♪♪ | (>>241)ノ゛ゥラナィ!ナィナィ!! Σ0 ( ) クダラナィ!!! ( ) ( )! ! !Σ◇゛ 0♯ ( )ノ゛ 当タッテルカラ! ( ) ! ! □
- 255 名前:132人目の素数さん mailto:sage [2022/01/23(日) 11:26:56.49 ID:7P24zMv4.net]
- 0♯ 教ェテァゲナィシ
(`∆´#) 先生ニ言ィッケテャル! (ノ□٩)♯ Ω …デ、占ィ嫌ィナ>>241ッチャマゎ、 ♐射手座カナニカナノ? ッテ…教ェテクレテモコッチゎ♯ 教ェテャラネェカラナァ? # 0# (`△´#) ィキナリdisカョ? (ノ◇٩) 数板ラシィゼ! √
- 256 名前:132人目の素数さん mailto:sage [2022/01/23(日) 11:28:30.68 ID:7P24zMv4.net]
- |ァヒィン!
|=3
- 257 名前:132人目の素数さん [2022/01/23(日) 12:16:33.43 ID:rPlioHHK.net]
- >>227
取れるなら一通りしかないのは明らかだが、取れるのかな? φ: V → Uで変数変換したときに ∫_U f(x)dx = ∫_V f(φ(y))ψ(y)dy の形のψ(y)が存在するかどうか?
- 258 名前:132人目の素数さん [2022/01/23(日) 12:22:14.21 ID:Beuf2hsZ.net]
- ∫_V f(y)ψ(y) dy
を内積<f, ψ>のように考えて、リースの表現定理( https://ja.m.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%82%B9%E3%81%AE%E8%A1%A8%E7%8F%BE%E5%AE%9A%E7%90%86 )などを使って示すことになると思う だから、fにも自乗可積分などの条件を課すことが必要そう(MがコンパクトならOK?)
- 259 名前:132人目の素数さん mailto:sage [2022/01/23(日) 15:57:37.00 ID:i1idL9ha.net]
- >>178
微分形式を考えるのは、積分のためではない。 だから代数多様体でも余接ベクトル空間を考えるのが役に立つ。 積分との関係は、ルベーグ積分のときのみうまくいき、ルベーグ測度以外ではうまく行かないのはあなたの言うとおり。
- 260 名前:132人目の素数さん mailto:sage [2022/01/24(月) 10:46:23.70 ID:z3cHUaF6.net]
- そのとおり
積分のための微分形式ではない 微分形式のための積分なのだ
- 261 名前:132人目の素数さん [2022/01/24(月) 12:31:08.05 ID:TkvF+Grc.net]
- 知ったかぶったことをどうしてそんなに得意げに書き込めるの?
|

|