[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 07/17 23:23 / Filesize : 462 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む7



125 名前:現代数学の系譜11 ガロア理論を読む [2012/10/14(日) 06:09:28.27 ]
>>124

3.IUTT-IV P35
Corollary 2.2. (Construction of Suitable Initial Θ-Data) Suppose that
X = P1Q is the projective line over Q, and that D ⊆ X is the divisor consisting of
the three points “0”, “1”, and “∞”. We shall regard X as the “λ-line” ? i.e.,
we shall regard the standard coordinate on X = P1Q as the “λ” in the Legendre
form “y2 = x(x?1)(x?λ)” of the Weierstrass equation defining an elliptic curve ?
and hence as being equipped with a natural classifying morphism UX → (Mell)Q
[cf. the discussion preceding Proposition 1.8]. Let
KV ⊆ UX(Q)
be a compactly bounded subset [i.e., regarded as a subset of X(Q) ? cf.
[GenEll], Example 1.3, (ii)] whose support contains the nonarchimedean prime
“2”. Then:


4.IUTT-IV P39
Corollary 2.3. (Diophantine Inequalities) Let X be a smooth, proper,
geometrically connected curve over a number field; D ⊆ X a reduced divisor; UX
def =
X\D; d a positive integer; ε ∈ R>0 a positive real number. Write ωX for the
canonical sheaf on X. Suppose that UX is a hyperbolic curve, i.e., that the degree
of the line bundle ωX(D) is positive. Then, relative to the notation reviewed above,
one has an inequality of “bounded discrepancy classes”
htωX(D) ≦ (1 + ε)(log-diffX + log-condD)
of functions on UX(Q)?d ? i.e., the function (1 + ε)(log-diffX + log-condD) ?
htωX(D) is bounded below by a constant on UX(Q)?d [cf. [GenEll], Definition 1.2,
(ii), as well as Remark 2.3.1, (ii), below].






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<462KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef