[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 12/23 22:16 / Filesize : 416 KB / Number-of Response : 553
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア生誕200周年記念スレ part 6



464 名前:Kummer ◆SgHZJkrsn08e [2012/03/28(水) 17:00:45.09 ]
命題
G を有限可解群(過去スレpart1の550)とする。
X を忠実(過去スレpart5の843)かつ原始的(>>355)な G-集合とする。
このとき G は唯一の非自明な(即ち単位群でない)アーベル正規部分群 H を持つ。
H は G の唯一の極小正規部分群(>>412)であり基本アーベル群(>>406)である。

証明
G は X 上原始的だから X 上推移的で |X| ≧ 2 である。
よって、>>437より G ≠ 1 である。
よって、>>413より G は極小正規部分群(>>412)N を持つ。
>>436より N は基本アーベル群である。
>>438より N は X に推移的に作用する。
>>440より N は正則に X に作用する。
よって、|N| = |X| である。

H ≠ 1 を G のアーベル正規部分群とする。
N = H を示せば良い。
>>438より H は X に推移的に作用する。
よって、>>440より H は正則に X に作用する。
よって、|H| = |X| である。
N は G の極小正規部分群だから H ∩ N = 1 または H ∩ N = N である。
H ∩ N = 1 なら HN は G のアーベル正規部分群であり |HN| = |H||N| = |X|^2 となる。
他方 NH は正則に X に作用するから |NH| = |X| である。
これは矛盾である。
よって、N ∩ H = H である。
よって、H ⊂ N である。
|H| = |N| = |X| であるから H = N である。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<416KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef