命題 G を I = {1、...、n} 上の対称群(>>6)とする。 G の任意の元は台(>>211)が互いに交わらない巡回置換(>>210)の積として一意に表される。
証明 σ を G の任意の元とする。 σ で生成される G の巡回部分群を H とする。 H は I 上の置換群(>>7)と見なされる。 よって、過去スレpart5の92より I は H による軌道により直和分割される。 i を I の任意の元とする。 Z を有理整数環とする。 O(i) = {σ^m(i); m ∈ Z} を i の H に関する軌道(過去スレpart5の92)とする。 σ^m(i) = i となる最小の整数 m ≧ 1 を r とする。 任意の整数 m に対して m = rq + k、0 ≦ k < r となる整数 q、k が存在する。 σ^m(i) = σ^k(i) である。 よって、O(i) = {i、σ(i)、...、σ^(r-1)(i)} となる。 このとき τ = (i、σ(i)、...、σ^(r-1)(i)) は長さ r の巡回置換(>>210)であり、 σ は O(i) 上で τ と一致する。 I は軌道により直和分割されるから σ は台が互いに交わらない巡回置換の積として表される。 これが一意であることは明らかである。 証明終