[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 05/09 10:11 / Filesize : 257 KB / Number-of Response : 696
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

2つの封筒問題スレ 2



600 名前:132人目の素数さん mailto:sage [2010/07/25(日) 08:25:27 ]
>>598
>>594の主張の中では、封筒の開閉は特に言及してない。あえて言えば
>>543のように金額を決める
(さらに、どちらの封筒に高額/低額の金額を入れるかは同様に確からしい)とするとき
ホストが封筒を用意する前
ホストが入れる金額を決めて、封筒に金額をいれた直後
ゲストが封筒を選んだ直後(封筒を開ける前)
ゲストが選んだ方の封筒の金額のみを確認した直後
のいずれの場合で
・ゲストが選んだ(選ぶ)封筒の金額がxであるという条件の下で
 (ゲストが選んだ封筒の金額の条件付期待値)<(ゲストが選んでない方の封筒の金額の条件付期待値)

・ゲストが選んでない(選ばない)方の封筒の金額がyであるという条件の下で
 (ゲストが選んだ封筒の金額の条件付期待値)>(ゲストが選んでない方の封筒の金額の条件付期待値)

・ゲストが選ぶ方,選ばない方の封筒の金額の組が{a,2a}であるという条件の下で
 (ゲストが選んだ封筒の金額の条件付期待値)=(ゲストが選んでない方の封筒の金額の条件付期待値)

はいずれも正しい。


現実に実証不可能かどうかは関係ない。
適当な解釈の下で、確率空間を考えることができるから確率論で扱える。
確率論の問題として扱えば
ある条件の下では常に(選んだ封筒の金額の期待値)<(選んでない封筒の金額の期待値)
別の条件の下では常に(選んだ封筒の金額の期待値)=(選んでない封筒の金額の期待値)
という結論がでてくるだけ。"交換すれば必ず得する"と主張しているわけではない。







[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<257KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef