[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 12/18 21:17 / Filesize : 256 KB / Number-of Response : 960
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

★東大入試作問者になったつもりのスレ★ 第十七問



133 名前:132人目の素数さん mailto:sage [2009/07/05(日) 20:51:36 ]
>>50

 a_n = n!(e^n)/n^(n +1/2),
とおくと、>>44-45 より
 a_k / a_(k-1) = e・{(k-1)/k}^(k -1/2) <1,
∴ a_n は単調減少。
lim[n→∞) a_n = c,
とおけば、
 c < a_n ≦ e,    (等号成立は n=1)

次に c=√(2π) を示す。
 b_m = (a_m)^2 /{a_(2m)} = (4^m)(√2)/{C[2m,m] √m},
とおくと
 lim[m→∞) b_m = c,

ところで、I_n = ∫[0,π/2] (sinθ)^n dθ とおくと、
 I_n = {(n-1)/n}I_(n-2), I_0 = π/2, I_1 = 1, 
より
 I_(2m-1) = (4^m)/{2m・C[2m,m]} = b_m /√(8m),
 I_(2m) = (π/2)C[2m,m] / (4^m) = π/{b_m・√(2m)}
 I_(2m+1) = {2m/(2m+1)}I_(2m-1),
明らかに
 I_(2m+1) < I_(2m) < I_(2m-1),
∴ √(2π) < b_m < √{2π(2m+1)/(2m)},
∴ c = lim[m→∞) b_m = √(2π),  (終)

ちっとも代数的ぢゃねぇが・・・






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<256KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef