[表示 : 全て 最新50 1-99 101- 2chのread.cgiへ]
Update time : 05/09 18:50 / Filesize : 93 KB / Number-of Response : 130
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 009



95 名前:Kummer ◆g2BU0D6YN2 [2007/12/08(土) 21:59:35 ]
定理(Hahn-Banachの定理の解析版)
E を実数体 R 上の線形空間とする。
p を E 上の劣線形関数(>>94)とする。
V を E の線形部分空間とし、 f を V 上の線形形式で
任意の y ∈ V に対して f(y) ≦ p(y) とする。
このとき E 上の線形形式 h で f の拡張であり
任意の x ∈ E に対して h(x) ≦ p(x) となるものがある。

証明
P = { (x, a) ∈ E × R | p(x) ≦ a } とおく。
>>86 より P は R 上の線形空間 E × R の 凸部分集合である。
P は明らかに頂点付き錘(>>71)である。
>>79 より E × R の元 (x, a), (y, b) の関係 (x, a) ≦ (y, b) を
(y, b) - (x, a) ∈ P で定義することにより E × R は
前順序線形空間となる。

(y, a) ∈ V × R のとき g(y, a) = a - f(y) とおく。
(y, a) ∈ (V × R) ∩ P のとき f(y) ≦ p(y) ≦ a であるから
g(y, a) = a - f(y) ≧ 0
よって g は V × R 上の正の線形形式(>>88)である。

任意の (x, a) ∈ E × R に対して b ≧ p(-x) + a となる b ∈ R を
とる。(x, a) ≦ (0, b) であり (0, b) ∈ V × R である。
よって、>>91 より g は E 上の正の線形形式 u に拡張される。
a ∈ R のとき (0, a) ∈ V × R だから u(0. a) = g(0, a) = a
よって任意の (x, a) ∈ E × R に対して
u(x. a) = u((x, 0) + (0, a)) = u(x, 0) + u(0. a) = u(x, 0) + a
h(x) = -u(x, 0) とおけば h は E 上の線形形式であり、
u(x. a) = a - h(x) である。よって h は f の拡張である。
u は正の線形形式だから p(x) ≦ a のとき h(x) ≦ a である。
よって h(x) ≦ p(x) である。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](*・∀・)<93KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef