[表示 : 全て 最新50 1-99 101- 2chのread.cgiへ]
Update time : 05/09 18:50 / Filesize : 93 KB / Number-of Response : 130
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 009



79 名前:Kummer ◆g2BU0D6YN2 [2007/12/02(日) 00:16:18 ]
命題
E を実数体 R 上の線形空間とする。
P を E の頂点付き凸錘(>>71, >>72)とする。
E の元 x, y の関係 x ≦ y を y - x ∈ P で定義する。
≦ は E の前順序であり E はこの前順序で前順序線形空間(>>75)となる。
このとき、P = { x ∈ E | x ≧ 0 } である。

証明
>>77 より

(1) P + P ⊂ P
(2) 任意の λ > 0 に対して λP ⊂ P
となる

x ≦ y, y ≦ z とする。
z - x = (z - y) + (y - x) ∈ P + P ⊂ P
よって x ≦ z である。

P は頂点付きだから 0 ∈ P である。
よって任意の x ∈ E に対して x ≦ x である。
以上から ≦ は前順序である。

x ≦ y なら 任意の z に対して (y + z) - (x + z) = y - x ∈ P
よって x + z ≦ y + z
(2) から x ≧ 0 なら λ > 0 に対して λx ≧ 0
よって E は前順序線形空間である。

P = { x ∈ E | x ≧ 0 } は明らかである。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](*・∀・)<93KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef