- 78 名前:Kummer ◆g2BU0D6YN2 [2007/04/01(日) 17:23:44 ]
- 命題
数列 {k_n}, n = 0, 1, . . . が与えられ、 各 k_i が有理整数で i ≧ 1 のとき k_i ≧ 1 とする。 α = [k_0, k_1, . . .] とおく。 任意の n ≧ 1 に対して α = [b_0, . . . , b_(n-1), β] を α の部分連分数展開とする。 つまり、各 b_i が有理整数で i ≧ 1 のとき b_i ≧ 1 で β > 1 である。 このとき、0 ≦ i < n のとき k_i = b_i であり、 β = [k_n, k_(n+1), . . . ] である。 証明 α_n = [k_n, k_(n+1), . . . ] とおく。 >>77 より α = [k_0, . . . , k_(n-1), α_n] である。 α_n > k_n だから α_n > 1 である。 よって >>76 から 0 ≦ i < n のとき k_i = b_i であり、 α_n = β である。 証明終
|

|