[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



76 名前:Kummer ◆g2BU0D6YN2 [2007/04/01(日) 17:02:50 ]
命題
[a_0, . . . , a_(n-1), α_n] = [b_0, . . . , b_(n-1), β_n]
とする。

ここで各 a_i と b_i は有理整数で
i ≧ 1 のとき a_i ≧ 1, b_i ≧ 1
α_n > 1
β_n > 1
とする。

このとき、各 i ≧ 0 で a_i = b_i
α_n = β_n
である。

証明
α = [a_0, . . . , a_(n-1), α_n] とおく。

α = a_0 + 1/[a_1, . . . , a_(n-1), α_n]
で [a_1, . . . , a_(n-1), α_n] > 1 である。
よって a_0 < α < a_0 + 1
同様に b_0 < α < b_0 + 1
よって a= 0 = b_0 である。
よって
[a_1, . . . , a_(n-1), α_n] = [b_1, . . . , b_(n-1), β_n]

これを続けて(正確には帰納法を使って)、
各 i ≧ 0 で a_i = b_i となる。
よって α_n = β_n となる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef