[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



449 名前:Kummer ◆g2BU0D6YN2 [2007/06/07(木) 22:17:39 ]
D を平方数でない(正または負の)有理整数で、D ≡ 0 または 1 (mod 4)
とする。
判別式 D の2次形式の集合を F(D) と書いた(>>184)。

F(D) を Γ = SL_2(Z) の作用(>>184)で類別した集合を F(D)/Γ と書く。

f = (a, b, c) ∈ F(D) として f の属す F(D)/Γ の類を C とする。

τ = (1, 0)/(0, -1) とおく。
det(τ) = -1 である。
(a, b. c)τ = (a, -b, c) である(>>296)。

τ^2 = 1 だから τ^(-1) = τ である。

(a, -b, c) が C に属すとする。
これは fσ = fτ となる σ ∈ SL_2(Z) が存在することを意味する。
よって fστ = f である。
det(στ) = -1 だから >>447, >>448 より f は両面形式 g と
同値になる。即ち C は両面形式 g を含む。

逆に F(D)/Γ の類 E がある両面形式 (k, l, m) を含むとする。
l ≡ 0 (mod k) だから l = kn となる有理整数 n がある。

S = (1, 1)/(0, 1) とおけば、S^n = (1, n)/(0, 1)
τS^n = (1, n)/(0, -1)

従って、>>442 より (k, l, m)τS^n = (k, l, m) である。
よって (k, l, m)τ = (k, l, m)S^(-n) となる。
det(S^(-n)) = 1 だから (k, l, m)S^(-n) 従って (k, l, m)τ は
E に含まれる。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef