[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



442 名前:Kummer ◆g2BU0D6YN2 [2007/06/06(水) 21:24:45 ]
D を平方数でない有理整数で、D ≡ 0 または 1 (mod 4) とする。
(a, b, c) を判別式 D の両面形式(>>438)とする。

b ≡ 0 (mod a) だから b = an となる有理整数 n がある。

σ = (1, n)/(0 -1) は GL_2(Z) の元で det(σ) = -1 である。

(a, b, c)σ = (k, l, m) とする。

σ = (1, n)/(0 -1) = (p, q)/(r, s) とおく。

p = 1
q = n
r = 0
s = -1
である。

過去スレ4の280より
k = ap^2 + bpr + cr^2 = a
l = 2apq + b(ps + qr) + 2crs = 2an - b = b
m = aq^2 + bqs + cs^2 = an^2 - bn + c = c

即ち (a, b, c)σ = (a, b, c) である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef