- 116 名前:Kummer ◆g2BU0D6YN2 [2007/04/08(日) 17:37:25 ]
- >>112 の逆が成り立つことは明らかだろうが、一応証明する。
命題 α と β を実無理数とする。 ある実無理数 ω と n ≧ 1, m ≧ 1 があり、 α = [k_0, . . . , k_(n-1), ω] β = [h_0, . . . , h_(m-1), ω] となるとする。 ここで、各 k_i は有理整数で i ≧ 1 のとき k_i ≧ 1 であり、 各 h_i も有理整数で i ≧ 1 のとき h_i ≧ 1 である。 このとき、α = (aβ + b)/(cβ + d) となる。 ここで a, b, c, d は有理整数で ad - bc = ±1 である。 証明 α = [k_0, . . . , k_(n-1), ω] より α = (pω + r)/(qω + s) となる。 ここで p, r, q, s は有理整数で ps - qr = ±1 である。 よって A = (p, r)/(q, s) とおけば、A ∈ GL_2(Z) であり、 α = Aω となる。 同様に β = [h_0, . . . , h_(m-1), ω] より β = (p'ω + r')/(q'ω + s') となる。 ここで p', r', q', s' は有理整数で p's' - q'r' = ±1 である。 B = (p', r')/(q', s') とおけば、B ∈ GL_2(Z) であり、 β = Bω となる。 従って、α = Aω = AB^(-1)ω となり AB^(-1) ∈ GL_2(Z) である。 証明終
|

|