- 112 名前:Kummer ◆g2BU0D6YN2 [2007/04/08(日) 16:33:36 ]
- 命題
β を実無理数とする。 α = (aβ + b)/(cβ + d) とする。 ここで a, b, c, d は有理整数で ad - bc = ±1 である。 このとき、ある実無理数 ω と n ≧ 1, m ≧ 1 があり、 α = [k_0, . . . , k_(n-1), ω] β = [h_0, . . . , h_(m-1), ω] となる。 ここで、各 k_i は有理整数で i ≧ 1 のとき k_i ≧ 1 であり、 各 h_i も有理整数で i ≧ 1 のとき h_i ≧ 1 である。 即ち、α と β を無限連分数に展開したとき、それぞれのある項から 先の展開は一致する。 証明 cβ + d < 0 なら -cβ - d > 0 で α = (-aβ - b)/(-cβ - d) だから cβ + d > 0 と仮定してよい。 β を 無限連分数に展開して β = [h_0, h_1, . . . ] とする。 m ≧ 1 に対して ω_m = [h_m, h_(m+1), . . . ] とおく。 >>77 より β = [h_0, . . . , h_(m-1), ω_m] である。 >>99 と同様にして、 β = (p_(m-1)ω_m + p_(m-2))/(q_(m-1)ω_m + q_(m-2)) (続く)
|

|