[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



101 名前:Kummer ◆g2BU0D6YN2 [2007/04/07(土) 15:05:11 ]
命題
簡略された2次無理数は純循環連分数に展開される。

証明
α を判別式 D の簡約された2次無理数とする。
α を連分数に展開して、
α = [k_0, k_1, . . . ] とする。
n ≧ 0 に対して α_n = [k_n, k_(n+1), . . . ] とおく。

>>99 より各 α_n は判別式 D の簡約された2次無理数である。
>>100 より相異なる α_n の個数は有限である。
よって α_n = α_m となる n < m がある。

n > 0 なら α_(n-1) = k_(n-1) + 1/α_n
α_(m-1) = k_(m-1) + 1/α_m

よって α_(n-1) - α_(m-1) = k_(n-1) - k_(m-1)
よって α'_(n-1) - α'_(m-1) = k_(n-1) - k_(m-1)
ここで α'_(n-1), α'_(m-1) はそれぞれ α_(n-1) と α_(m-1) の
共役である。

各 α_n は簡約された2次無理数だから
-1 < α'_(n-1) < 0
-1 < α'_(m-1) < 0
よって |α'_(n-1) - α'_(m-1)| = |k_(n-1) - k_(m-1)| < 1
k_(n-1) - k_(m-1) は有理整数だから 0 である。
よって α'_(n-1) = α'_(m-1) となる。
よって α_(n-1) = α_(m-1) である。
以上を繰り返せば α_0 = α_(m-n) となる。
よって α は純循環連分数に展開される。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef