- 100 名前:Kummer ◆g2BU0D6YN2 [2007/04/07(土) 14:37:53 ]
- 命題
同じ判別式 D を持つ簡略された2次無理数の個数は有限である。 証明 α を判別式 D の簡約された2次無理数とする。 α は ax^2 + bx + c の根とする。 ここで a, b, c は有理整数で a > 0, gcd(a, b, c) = 1 D = b^2 - 4ac である。 β を α の共役とする。 α は簡約された2次無理数だから >>95 より α > 1, -1 < β < 0 である。 よって α + β > 0 αβ < 0 である。 ax^2 + bx + c = a(x - α)(x - β) だから b = -a(α + β) c = aαβ である。 よって b < 0, c < 0 となる。 よって D = b^2 + 4|ac| よって b^2 < D だから b の取りうる値は有限個である。 4|ac| = D - b^2 だから a, c の取りうる値も有限個である。 証明終
|

|