[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



814 名前:9208 ◆lJJjsLsZzw [2006/01/25(水) 12:02:06 ]
次の命題は >>616 をやや一般にしたもの。

命題
A を 次元1のネーター環で、B をその全商環(>>362)とする。
A は B において整閉とする。
I を A の非退化(>>431)なイデアルとする。
つまり、I は A の非零因子を含むイデアルである。
このとき、I は、非退化な極大イデアルの有限個の積に分解される。

証明
I ≠ A と仮定してよい。
I = q_1 ∩...∩ q_r を準素イデアル q_i による最短準素分解
(前スレの188)とする。Ass(A/q_i) = {p_i} とする。
I は非退化だから各 p_i は非退化な極大イデアルである。
よって、ht(p_i) = 1 だから、
p_i は Supp(A/I) の極小元である。
よって、前スレの198より q_i = A ∩ IA_(p_i) となる
(この記法に関しては前スレの543を参照)。

>>810 より A_(p_i) は離散付値環であるから、
IA_(p_i) = (p_i)^(n_i)A_(p_i) となる整数 n_i > 0 がある。
よって、>>615 の証明と同様にして、q_i = (p_i)^(n_i) となる。

前スレの339より I = (p_1)^(n_1)...(p_r)^(n_r) となる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef