命題 A を整域とする。 A の任意の零でないイデアルが有限個の素イデアルの積に 分解するなら、A はDedekind整域(>>601)である。
証明 P を A の零でない素イデアルとする。 a ∈ P, a ≠ 0 をとり、aA = (P_1)...(P_r) とする。 ここで各 P_i は素イデアルである。 I をイデアルとし、P_i ⊂ I, P_i ≠ I と仮定する。 >>669より、P_i = (P_i)I である。>>634 より P_i は可逆だから I = A となる。よって、各 P_i は極大イデアルである。 (P_1)...(P_r) ⊂ P だから P_i ⊂ P となる i がある。 よって P = P_i となり、P は可逆である。 A の任意の零でないイデアルは有限個の素イデアルの積であるから、 これも可逆である。>>613より A はDedekind整域である。 証明終