補題 A を整域とする。 A の任意の零でないイデアルが有限個の素イデアルの積に 分解するとする。 P を零でない素イデアルとし、I を P ⊂ I で P ≠ I となる イデアルとする。このとき P = PI となる。
証明 PI ⊂ P は明らかだから、 P ⊂ PI を示せばよい。 I ⊂ J なら PI ⊂ PJ だから、 a ∈ A とし、I = P + aA と仮定してよい。 >>665より、I^2 = P + (a^2)A となる。 I^2 = P^2 + Pa + (a^2)A だから、 P ⊂ P^2 + Pa + (a^2)A となる。 x ∈ P とすると、x = y + za + (a^2)b となる。 ここで、y ∈ P^2, z ∈ P, b ∈ A である。 これから、(a^2)b ∈ P となる。a^2 は P に含まれないから b ∈ P である。 よって、P ⊂ P^2 + Pa = P(P + aA) となる。 証明終