[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



511 名前:9208 ◆lJJjsLsZzw [2005/12/16(金) 10:47:54 ]
命題
A を環とし、その全商環(>>362)を B とする。
B の A-加群としての部分加群 M が非退化(>>431)で射影的なら
M は可逆(>>430)である。

証明
M は射影的だから、>>426 より、Hom(M, A) の元の族
(f_i), i ∈ I と、M の元の族 (x_i), i ∈ I が存在し、
M の任意の元 x に対して x = Σf_i(x)x_i となる。
M は非退化だから、>>444 より各 i に対して y_i ∈ B があり
M の任意の元 x に対して f_i(x) = (y_i)x となる。

>>434 より M ∩ S は空でない。s ∈ M ∩ S をとる。
s は非零因子だから s = Σ(x_i)(y_i)s より、
Σ(x_i)(y_i) = 1 となる。
(y_i) で生成される B の A-部分加群を N とすれば、MN = A となる。
よって M は可逆である。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef