[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



235 名前:208 [2005/12/07(水) 15:47:32 ]
命題
A を環、M を有限表示を持つ A-加群とする。
A の各極大イデアル m に対して M_m が A_m-加群として自由なら
M は射影的である。

証明
P → Q → 0 を A-加群の完全列とする。
Hom(M, P) → Hom(M, Q) の余核を T とする。
よって、
Hom(M, P) → Hom(M, Q) → T → 0
は完全である。
m を A の任意の極大イデアルとすると、
Hom(M, P)_m → Hom(M, Q)_m → T_m → 0
も完全である。
>>223 より
Hom(M_m, P_m) → Hom(M_m, Q_m) → T_m → 0
は完全である。
一方、M_m は自由であるからもちろん射影的なので、
完全列 P_m → Q_m → 0 より、
Hom(M_m, P_m) → Hom(M_m, Q_m) は全射である。
よって、T_m = 0 である。
m は任意の極大イデアルだから、>>224 より T = 0 となる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef