[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



212 名前:209 [2005/12/06(火) 17:20:06 ]
命題
A を環、M を A 上の有限生成射影加群とする。
A の各素イデアル p に対して f ∈ A - p が存在し
M_f は A_f-加群として自由である。

証明
>>208 より M_p は A_p-加群として自由である。
M_p のA_p-自由加群としての基底を x_1/s, ..., x_n/s とする。
ここで、x_i ∈ M, s ∈ A - p である。
>>207より M_f は A_f-加群として自由であるから、
A を A_s, M を M_f で置き換えて、s = 1 と仮定してよい。
L = A^n とし、L の標準基底を e_1, ..., e_n とする。
A-加群としての射 φ: L → M を φ(e_i) = x_i で定義する。
R = Coker(φ) とおく。
完全列 L → M → R → 0 より
L_p → M_p → R_p → 0 も完全。
一方、L_p → M_p は同型だから、R_p = 0 となる。
>>210 より、R_g = 0 となる g ∈ A - p が存在する。
よって、L_g → M_g → 0 は完全となる。
再び A を A_g, M を M_g で置き換えて、g = 1 と仮定してよい。
つまり、L → M → 0 は完全となる。
K = Ker(L → M) とおくと、
0 → K → L → M → 0 は完全となる。
>190 より M は有限表示を持つから、>>179 より K は有限生成となる。
0 → K_p → L_p → M_p → 0
は完全だから、K_p = 0 となる。
再び >>210 より K_f = 0 となる f ∈ A - p が存在する。
よって、
0 → L_f → M_f → 0
は完全となる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef