- 767 名前:132人目の素数さん [04/10/22 16:21:21]
- (mod8)
0^2≡0,1^2≡1,2^2≡4,3^2≡1,4^2≡0,5^2≡3^2≡1,6^2≡4,7^2≡1, よって、任意の自然数nにおいてn^2≡0,1,4 題意を満たす(x,y,z)の組がもしあればx^2+y^2+z^2≡0,4で x,y,zはどれもmod8で0か4でなければならない。 つまり、x,y,zは全て偶数でなければならない。 x=2*x1,y=2*y1,z=2*z1,(x1,y1,z1は自然数)とおける。 この時、条件は x1^2+y1^2+z1^2=(8m+7)4^(n-1)とかける。 この操作を繰り返し、 xn^2+yn^2+zn^2=(8m+7)を得る。 この時、xn,yn,znのうち1個または全てが奇数となる。 しかしながら、xn,yn,znのうち1個または全てが奇数ならば xn^2+yn^2+zn^2≡1,3(mod8)であるから、この様な組み合わせは存在しない。
|

|