- 930 名前:132人目の素数さん mailto:sage [04/04/18 16:20]
- ああ、完全におかしい。B(Z)じゃなくてσ(B(X)×B(Y))だ。再び訂正。
箱型でも一般直積でも準基底から基底作って、その「任意個」の和集合を 開集合にする。可算和ならばσ(B(X)×B(Y))に入ることは定義から言える けど、非可算和だとσ(B(X)×B(Y))に入らないZの開集合が存在する可能性 があるのでは?で、第2可算公理があれば、O(Z)の基底で開集合の直積から なる可算なものが取れて、Z自身第2可算公理を満たすから、 O(Z)⊆σ(B(X)×B(Y)) ⇒ B(Z)⊆σ(B(X)×B(Y)) となって等号成立。
|

|