[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



90 名前:132人目の素数さん mailto:sage [03/10/09 21:05]
.>>89
以下前層Fの層化をF~と書く。
―補題―
位相空間X上の前層Fとその層化F→F~についてある開集合Uが存在しF|Uが層であるなら
任意のV⊂UについてF(V)→F~(V)は同型。
∵層化の具体的表示F~(V)={s∈Π[p∈V]F_p|∃V=∪V_λ∃s_λ∈F(V_λ)∀p∈V_λs_p=(s_λ)_p}
をみれば(F|U)~=(F~)|Uがわかる。仮定よりF|U=(F|U)~。これから主張が成立。□
 
―命題5の証明―
1),2)X=∪U_λ=∪V_μをL_1|U_λ、L_2|V_μが自明層になるようにとる。
W=W_λμ=U_λ∩V_μ上で前層L_1(x)L_2|_W、Hom(L_1,L_2)|Wは層である。
ゆえに(L_1(x)L_2)~|W=(L_1(x)L_2)|W、Hom(L_1,L_2)~|W=Hom(L_1,L_2)|WであるがこれらはともにO|Wにひとしい。
3)前層の射f:L(x)Hom(L,O)→Oをa(x)f→f(a)でさだめられるものとする。L|W、Hom(L,O)|Wが自明になる
W上でこれは同型写像。補題よりL(x)Hom(L,O)|WとL(x)Hom(L,O)~|Wは同型なので主張が成立。
 
こんなもんでいいすか?







[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef