[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



853 名前:132人目の素数さん [03/11/24 13:44]
定義
f: X → Y をスキームの射とする。
f が全射かつ平坦なとき、忠実平坦な射という。

補題
X = Spec(A), Y = Spec(B) をアフィンスキームとし、
f: Y → X をスキームの射とする。
f が忠実平坦なことと B が A上忠実平坦なことは同値である。
証明
B が A上忠実平坦とする。
p を A の素イデアルとする。k(p) = A_p/pA_p とおく。
B (x) k(p) は 0 でない(>>131)。
したがって、p のファイバー f^(-1)(p) = Spec(B (x) k(p)) は
空でない。故に、f は全射である。補題より、f は平坦だから
忠実平坦である。

逆に、f が 忠実平坦とする。
補題より、B は A上平坦である。
p を A の素イデアルとする。
f は全射だから、p のファイバー f^(-1)(p) = Spec(B (x) k(p)) は
空でない。故に、B (x) k(p) は 0 でない。
よって、B は A上忠実平坦である(>>131)。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef