まず X をアフィンスキーム Spec(A) と仮定する。 f: Z → X は φ: A → Γ(X) により定まる(II Ex.2.4)。 I = Ker(φ), Y = Spec(A/I) とおけば、Y が問題の 性質をみたすことは明らかである。
X がアフィンでない場合。 U を X のアフィン開集合とする。 f_U : f^(-1)(U) → U を f の制限とする。 Y_U を上記のようにして得られる U の閉部分スキームとする。 V を X のアフィン開集合とする。 Y_U と Y_V は U ∩ V で一致することは明らかだろう。 これより、Y が存在し、問題の性質をみたすことも 明らかだろう。