- 981 名前:132人目の素数さん mailto:sage [01/11/01 03:52]
- >>980
※x_n,y_nがn→∞でx_n→0,y_n→0となり、 x_n+1=f(x_n),y_n+1=g(y_n)の時にf'(0)=g'(0)となるなら、 lim(n→∞)x_n/y_n=1となる。 もし↑のが成り立つのなら 976の場合は x_n+1=f(x_n)=x_n*(1-x_n) y_n+1=g(y_n)=y_n/(1+y_n) 980の場合は x_n+1=f(x_n)=x_n*(1-x_n*x_n) y_n+1=g(y_n)=y_n/sqrt(1+y_n*y_n) とすれば両方とも極限値はlim(n→∞)x_n/y_nとなるので1になりますけど… ※を証明するのが難しい。まんまロピタルの定理使うわけにもいきませんしね… でなおしてきます。
|

|