[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/29 05:19 / Filesize : 347 KB / Number-of Response : 1039
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



488 名前:132人目の素数さん [2024/04/24(水) 02:21:11.48 ID:LloxEhQT.net]
>>466
〔参考書〕
高木貞治「解析概論」改訂第三版、岩波書店 (1961)
  第4章、§48.定理42.p.166〜167

>>467
 F(1) = 0,  (← 揚足取 御免)

>>468
(1) 和積公式より
 sin(2kx) − sin(2(k-1)x) = 2sin(x)・cos((2k-1)x),
 k = 1,2,…,n でたす。

(2) 積和公式より
 4∫[0,π/2] cos((2i-1)x) cos(2j-1)x) dx
 = 2∫[0,π/2] {cos(2(i+j-1)x) + cos(2(i-j)x)} dx
 = 2∫[0,π/2] cos(2(i-j)x) dx
 = δ_(i,j)・π,
 i, j = 1,2,…,n でたす。

(3)
 1/sin(x)^2−1 = 1/tan(x)^2 < 1/x^2 < 1/sin(x)^2,
を(2)に入れると
 ∫[0,π/2] (sin(2nx)/x)^2 dx = (n−θ/2)π  (0<θ<1)

(4)
 ∫[0,∞] (sin(y)/y)^2 dy
  = lim[n→∞] ∫[0,nπ] (sin(y)/y) dy
  = lim[n→∞] (1/2n)∫[0,π/2] (sin(2nx)/x)^2 dx
  = lim[n→∞] (π/2n) (n−θ/2)     (0<θ<1)
  = lim[n→∞] (π/2) (1−θ/2n)
  = π/2.






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<347KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef