- 488 名前:132人目の素数さん [2024/04/24(水) 02:21:11.48 ID:LloxEhQT.net]
- >>466
〔参考書〕 高木貞治「解析概論」改訂第三版、岩波書店 (1961) 第4章、§48.定理42.p.166〜167 >>467 F(1) = 0, (← 揚足取 御免) >>468 (1) 和積公式より sin(2kx) − sin(2(k-1)x) = 2sin(x)・cos((2k-1)x), k = 1,2,…,n でたす。 (2) 積和公式より 4∫[0,π/2] cos((2i-1)x) cos(2j-1)x) dx = 2∫[0,π/2] {cos(2(i+j-1)x) + cos(2(i-j)x)} dx = 2∫[0,π/2] cos(2(i-j)x) dx = δ_(i,j)・π, i, j = 1,2,…,n でたす。 (3) 1/sin(x)^2−1 = 1/tan(x)^2 < 1/x^2 < 1/sin(x)^2, を(2)に入れると ∫[0,π/2] (sin(2nx)/x)^2 dx = (n−θ/2)π (0<θ<1) (4) ∫[0,∞] (sin(y)/y)^2 dy = lim[n→∞] ∫[0,nπ] (sin(y)/y) dy = lim[n→∞] (1/2n)∫[0,π/2] (sin(2nx)/x)^2 dx = lim[n→∞] (π/2n) (n−θ/2) (0<θ<1) = lim[n→∞] (π/2) (1−θ/2n) = π/2.
|

|