- 467 名前:132人目の素数さん [2024/04/23(火) 13:21:14.39 ID:7Ack2Qhi.net]
- >>447
1 + √(1+x) = u, とおくと x = (u-1)^2 − 1, dx = 2(u-1)du, より ∫ √{1+√(1+x)} dx = ∫ √u・2(u-1)du = (4/5)u^{5/2} − (4/3)u^{3/2} = (4/15)(3u−5)u^{3/2}, 積分の範囲: 1+√2 ≦ u < 1+√5, (与式) = (4/15){(13+√5)√(1+√5)−(4+√2)√(1+√2)} = 5.0655498446
|

|