[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 00:54 / Filesize : 432 KB / Number-of Response : 1055
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

スレタイ 箱入り無数目を語る部屋17



353 名前:率連続複利のドリフト率でσはその年率の上昇率の変化率の標準偏差ですが、f(S,t)=log Sとしてこれを偏微分すると、
∂f/∂S = S^-1, ∂^2f/∂S^2=-S^-2
になり、一方で
∂f/∂t=0
です。

伊藤レンマ
伊藤レンマを計算すれば、dfが計算できて、
df= (μ-σ^2/2)dt +σdB
が結論になります。ここで(dB)^2=dtとなるのが先生の発見だと思います。それでdtの係数にσ^2/2の項が出てくる。これが投資家にとって極めて重要なのです。

株価が時刻tから時刻Tへと移るときに、Δlog S = log S(T)- log S(t)=(μ-σ^2/2)Δt + σ dBと置けるのですから、
log(S(T)/S(t))が平均(μ-σ^2/2)(T-t)、標準偏差σ(T-t)^0.5の正規分布に従うことになるからです。( – – – A)
この算出は、(dB^2=dt)の部分はそんなに簡単ではありません。S^2が自由度1の平均1で分散2のカイ二乗分布に従い、じゃあ、なぜ、S^2がカイ二乗分布に従うのかという点については、比較的容易にガンマ関数の初歩的な計算と置換積分でわかります。 nF(n)=F(n+1) (nは本来複素数まで拡張できる)
このレンマがブラックショールズ方程式で活躍。金融工学の全盛期を支えました。
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<432KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef