[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 23:11 / Filesize : 800 KB / Number-of Response : 1116
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学・数学隣接分野(含むガロア理論)12



492 名前:現代数学の系譜 雑談 [2023/01/06(金) 20:52:00.28 ID:9sWh0IFW.net]
>>435
(引用開始)
この本知ってる?
フーリエ解析の序章
https://www.sugakushobo.co.jp/903342_49_mae.html
杉山健一 著
A5判・並製・176頁・定価2300円+税
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
理論・応用を問わず様々な分野で有用であるFourier解析学の入門書.
理論だけではFourier変換の威力が実感されないので,
整数論, 幾何学, 解析学, 物理学, 工学などへの諸分野への応用も解説した.
まえがき
 Fourier解析は,理論・応用を問わず様々な分野で有用である.
 本書ではそ の入門として次の場合のFourier変換を解説する.
 (1)有限巡回群上定義された関数のFourier変換.
 (2)周期関数のFourier変換.
 (3)急減少関数のFourier変換.
 (4)超関数のFourier変換.
 一見するとこれらの話題は独立であるように思われるが,実は一般化により
     (1)→(2)→(3)→(4)
 という関係があり,その過程でFourier変換の思想は一貫している.
 (略)
(引用終り)

おお! 良い本あるじゃん!w
じゃ、早速これ
 前スレより
https://rio2016.5ch.net/test/read.cgi/math/1659249925/417
種を明かすと>>372の方程式
x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0
の左辺は
Π_{k=1}^{5}(x-1/cos(2kπ/11)).
方程式のガロア群は5次の巡回群であり、代数解法が可能。
その解法にはζ_5が必要だが
最小分解体にはζ_5は「含まれない」が正解。
(引用終り)

に適用してくれや!w
1)できれば、x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0から出発して、べき根表示頼むわ
2)あるいは、Π_{k=1}^{5}(x-1/cos(2kπ/11))からでも良いけどね。但し、根”1/cos(2kπ/11)”への直接のフーリエ変換からべき根表示を頼むよ
 (cos(2kπ/11)を出発点として、逆数取るのは不可なw)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<800KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef