1 名前:132人目の素数さん mailto:sage [2020/02/25(火) 11:58:05 ID:xlZ4iTwN.net] クレレ誌 クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。 現代の純粋・応用数学を目指して
910 名前:132人目の素数さん [2020/06/16(火) 23:49:45 ID:GF0SFBjH.net] 分かったから安達は微小なεとやらを使って >定数関数y=0も不連続である(>>739 を証明してくれ
911 名前:132人目の素数さん [2020/06/17(水) 00:40:18.80 ID:Qxx3CqFx.net] lim[x→a]f(x)=b・・・(1) ∀ε>0,∃δ>0,∀x,(0<|x-a|<δ⇒|f(x)-b|<ε)・・・(2) (ε=100000000),∃δ>0,∀x,(0<|x-a|<δ⇒|f(x)-b|<ε)・・・(3) と置く。 極限の定義、「ε=100000000でもいい」、「ε=100000000で極限を証明できない」を (1),(2),(3) で表すと 極限の定義:((1)⇔(2))は真 「ε=100000000でもいい」:((2)⇒(3))は真 あるいは ((1)⇒(3))は真 「ε=100000000で極限を証明できない」:((3)⇒(2))は偽 あるいは ((3)⇒(1))は偽 安達はこれを理解できるまでROMってろアホ
912 名前:132人目の素数さん [2020/06/17(水) 00:46:21.82 ID:AK1o6YXS.net] そういえばスレ主もナンセンスでないεに拘ってたな εが10000のときも成り立ちますと述べる者にナンセンスと言うなら、例えば、 εが0.0001のときに成り立つと述べる者はナンセンスでないと思っているはず しかし、εがいくらいくらのときに成り立つという主張自体は証明にならない そのことが分かっている者は両者を区別する意味がないと思っている 区別する者は分かっておらず、小さいεを使えば証明できると思っている ナンセンスと言い出すことじたいがその前提に立つことになるので、ナンセンス 実際、ナンセンスでない小ささの正の数をaとすると、定数関数y=a/2は、 ┃y-0┃=a/2<aなので、任意のδに対し、┃x-0┃<δ→┃y-0┃<aなので、 ε=aのとき成り立つが、だから何だという話で、何の意味もない ナンセンスでない数があるとして、それを選ぶことに何の意味があるのか不明
913 名前:132人目の素数さん [2020/06/17(水) 01:29:22.97 ID:Qxx3CqFx.net] 瀬田の理解度は安達と同レベル、すなわちまったく分かってない なんで分かってないのに教える立場を取りたがるのか不思議でならない
914 名前:132人目の素数さん [2020/06/17(水) 01:31:21.11 ID:J/gmet3w.net] スレ主さんは安達さんよりはマシですよ 自分の間違えに気づいたようですから 最近レスあんまりしていませんからね
915 名前:132人目の素数さん [2020/06/17(水) 06:01:39.89 ID:nNTE5mSe.net] セタは安達より酷いかもよ ∈と⊂は同じだといいはったり 公理図式で任意の式が入るところを公理に限るといいはったり だいたい利口ぶってどこにも書いてないことしたり顔でいいだすと間違い 頭が悪いくせにいいと思い込む、三流国立大卒 それがセタ
916 名前:哀れな素人 [2020/06/17(水) 07:44:57.71 ID:P8wUVKnT.net] 依然としてεδ論法の原理さえ分っていない池沼の群れ(笑 >>841 底なしの池沼(笑 >大きいところでは自動で成り立つからです 成り立っても連続も極限も示せないのだ(笑 分るか? 池沼(笑 大きいεでは連続も極限も示せないのだ(笑 分るか、池沼(笑 小さいところで成り立つから連続と極限が示せるのだ(笑 分るか? 池沼(笑 お前、一体いつになったら分るのか(笑 アホすぎて付き合っていられない(笑
917 名前:哀れな素人 [2020/06/17(水) 07:46:07.53 ID:P8wUVKnT.net] ID:GF0SFBjH ID:AK1o6YXS >安達数学における極限ということでいいのか? 違う(笑 >定数関数y=0も不連続である お前が思っているような意味で不連続だと言っているのではない(笑 お前はεδ論法で連続や極限を示せる理由が分っていない(笑
918 名前:哀れな素人 [2020/06/17(水) 07:51:49.09 ID:P8wUVKnT.net] >>848 >自分の間違えに気づいたようですから ↑まだ自分が正しいと思っている池沼(笑 「間違え」という変な日本語を使い続ける池沼(笑 アホさ底なしの池沼である(笑 アホすぎて付き合っていられない(笑
919 名前:哀れな素人 [2020/06/17(水) 07:55:06 ID:P8wUVKnT.net] ID:Qxx3CqFx ε=100000000では極限は示せないのだバカ(笑
920 名前:哀れな素人 [2020/06/17(水) 08:10:35 ID:P8wUVKnT.net] スレ主よ、お前はなぜ黙っているのか。 お前はεやδは小さくなければ意味がない、ということも、 εδ論法は局所(近傍)の理論だということも分っているはずなのだ、 なぜならそれが常識だから。 ところがこのバカどもはそれが分っていないのだ。 だから僕はうんざりして、このスレにこの話題を持ち込んだのだ。 ところが依然としてこのバカどもは 「任意だからどんな巨大な数でもいい」と思っているのだ(笑 お前にとっては論ずるに値しない問題かもしれないが、 お前が黙っていれば、このバカどもは延々として 「任意だからどんな巨大な数でもいい」と主張し続けるのだ。 だから、お前がこのバカどもに、そうではないと説明しない限り、 このスレは延々とこの話題で占拠されるのである。 分るか? だからお前はいつまでも傍観してはいられないのだ。 このバカどもに対して何とか言ってやれ。
921 名前:哀れな素人 [2020/06/17(水) 08:42:37 ID:P8wUVKnT.net] >大きいところでは自動で成り立つからです ここにこの少年のアホさが端的に表れている(笑 この池沼少年は「大きいところ」を ε=1000000000000のようなところだと思っているのだ(笑 しかし、この「大きいところ」とは 0.000001より大きい0.00001のようなところなのである(笑 なぜならεδ論法とは基本的にx=aでの連続や極限を論ずる論法であって、 x=bや、あるいはxの全区間を論じる論法ではないからだ(笑 だからx=aで連続だからといってx=bで連続であるとは限らないし、 ましてx→aの極限は示せても、x=bの極限は示せないのである(笑 x=bの極限を示すためには一からやり直さなければいけないのである(笑 この池沼はそれが分っていないのだ(笑 まさに池沼少年と呼ぶにふさわしいバカ男だ(笑
922 名前:132人目の素数さん [2020/06/17(水) 12:03:11.81 ID:AK1o6YXS.net] >>855 >しかし、この「大きいところ」とは >0.000001より大きい0.00001のようなところなのである(笑 > >なぜならεδ論法とは基本的にx=aでの連続や極限を論ずる論法であって、 >x=bや、あるいはxの全区間を論じる論法ではないからだ(笑 εで制限するのは縦
923 名前:132人目の素数さん [2020/06/17(水) 12:25:16 ID:AK1o6YXS.net] >>851 >>安達数学における極限ということでいいのか? >違う(笑 なんで?安達が微小だと認める正数を使う前提なんだから満足だろ?何でダメなの? >お前はεδ論法で連続や極限を示せる理由が分っていない(笑 じゃー>>844から逃げるなよ >>定数関数y=0も不連続である >お前が思っているような意味で不連続だと言っているのではない(笑 数学では連続だが安達数学では不連続ということなんだね では、数学で連続であることと、安達数学で不連続であることを証明してくれ
924 名前:現代数学の系譜 雑談 mailto:sage [2020/06/17(水) 13:26:14.31 ID:m/mlsVi6.net] >>854 哀れな素人さん、どうも です(^^ (引用開始) スレ主よ、お前はなぜ黙っているのか。 お前はεやδは小さくなければ意味がない、ということも、 εδ論法は局所(近傍)の理論だということも分っているはずなのだ、 なぜならそれが常識だから。 (引用終り) (正直、仕事も忙しいし、IUT祭も忙しいですw。アホたちの相手はご勘弁です(^^) で、本題 全くその通りです 同意です (引用開始) ところがこのバカどもはそれが分っていないのだ。 だから僕はうんざりして、このスレにこの話題を持ち込んだのだ。 ところが依然としてこのバカどもは 「任意だからどんな巨大な数でもいい」と思っているのだ(笑 (引用終り) 全くその通りです 同意です 例えて言えば、1円で済むところを、1万円札(\10,000)を (釣りは要らないと) 出すみたいな、アホどもですな ε=1000000000000? カンマを入れると 1000,000,000,000 =10^12 = 1兆ですな(^^ 長さでいうと、単位をm(メートル)として 1兆m(メートル) =10億km 地球と月の距離が 30万km 太陽との 距離 1億5000万kmですから 10億km というと、まさに天文学的な数字です 東京の交通事故で言えば、調べるべきは せいぜい事故現場の周囲 数十メートルのはず 月の裏や太陽の裏まで調べるやつアホですな εδで意味があるのは、明らかにε<1のところですね ε=1000000000000?、はっきり言ってアホ いつまで、こんな議論を続けるのかな? アホのヒマ人たちですなww(^^; εδで論ずるべきは、あくまである点x=aの近傍であって ε=1000000000000?、はっきり言ってアホですよねw(^^ 以上 (参考) photon.sci-museum.kita.osaka.jp/question/text/distance.html 主な天体までの距離と大きさ 太陽 距離 1億5000万km 8光分
925 名前:132人目の素数さん [2020/06/17(水) 14:56:40.67 ID:AK1o6YXS.net] >>858 ε=10^100だろうが10^-100だろうが、 具体的な数を用いても何ら証明にならない点で同列だよ 前者をアホだと述べる時点でそのことが全く分かってないのがモロバレ >εδで意味があるのは、明らかにε<1のところですね 任意の「ε<1」で成り立つことに意味があると言ってるのか、 ある「ε<1」で成り立つことに意味があると言ってるのかが曖昧だが、 任意のε<100で成り立つ→任意のε<10で成り立つ→任意のε<1で成り立つ、なので、 前者なら無意味で後者なら嘘、どちらにせよ低脳確定
926 名前:132人目の素数さん [2020/06/17(水) 17:04:47.04 ID:nNTE5mSe.net] >>858 >正直、仕事も忙しいし、IUT祭も忙しいですw 仕事が忙しいなら、IUT祭をまっさきにやめなよ 以下で述べる通り、εδも全然理解できてないんだからさw >εδで意味があるのは、明らかにε<1のところですね >>859 もいってるけど ◆yH25M02vWFhP はεδが根本から分かってないね もしあるε>0について、δが存在して ∀x.|x-a|<δ⇒|f(x)-f(a)|<ε がいえるなら、E>=εなる、任意のEで ∀x.|x-a|<δ⇒|f(x)-f(a)|<E がいえる 一方で、ε>0となる最小のεは存在しないから いかに小さいεであっても、 単独のεについてδが存在して ∀x.|x-a|<δ⇒|f(x)-f(a)|<ε といえれば ∀ε>0.∃δ>0.∀x.|x-a|<δ⇒|f(x)-f(a)|<ε が成り立つ、とはならない そこがεδ論法の真のポイント >εδで論ずるべきは、あくまである点x=aの近傍であって それじゃ何もいったことにならないな 御愁傷様
927 名前:132人目の素数さん [2020/06/17(水) 17:07:02.90 ID:nNTE5mSe.net] >>859 >ε=10^100だろうが10^-100だろうが、 >具体的な数を用いても何ら証明にならない まったくその通り 「大きな数では意味がない」のではなく 「どんなに小さな数でもそれ単独では全く意味がない」というのが正しい 結局、0に収束する数列 ε1>ε2>ε3・・・ について、 δ1>δ2>δ3・・・ (注:必ずしも0に収束する必要はない) が存在しなくてはならない >そのことが全く分かってないのがモロバレ 結局εδでつまづく奴って 無限を怖がって避けつづける奴 なんだよな 火を怖がる野生動物みたいなもん(バッサリ)
928 名前:粋蕎 mailto:sage [2020/06/17(水) 17:52:35.87 ID:i4g4edZz.net] 任意のεrror_order其れ々れにδistance_qualityが存在し
929 名前:現代数学の系譜 雑談 mailto:sage [2020/06/17(水) 18:42:45.82 ID:m/mlsVi6.net] >>858 補足します(^^ 1.下記 参考1)ご参照。 日本の大学の数学教育界では、20世紀前半から1970年代くらいまでは、”ワイエルシュトラスの「イプシロン-デルタ」まんせー!”という時代があった 曰く「εδが厳密な大学の数学を体現したもので、おまいら新入生は 高校数学ではいい加減に教えられたのだ〜! εδが分からないやつら 落ちこぼれ」という神話の時代があった 2.しかし、参考1)の 位相空間&圏論、あるいは 参考2)超準解析 などの動きから、世界の潮流は、”「イプシロン-デルタ」まんせー”から離れていった 3.参考3)〜5)にあるように、
930 名前:ヨ数の連続性に限れば、lim x→a f(x)=f(a) で尽くされている。つまり、点x=aにおける極限とその収束の問題が本質なのだ ε=1000000000000? アホの極みだろ? 要するに、εδに毒されて、それを記号でしか考えられないアホが、”「イプシロン-デルタ」まんせー”といいつつ、ε=1000000000000を叫ぶのだったw(^^; 4.”関数の連続性に限れば、lim x→a f(x)=f(a) で尽くされている”という本質的理解を忘れた アホのヒマ人たちなのです! ww(^^ <参考> 参考1) https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90 極限 数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、英: limit)がしばしば考察される。直感的には、数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。 数列の収束 カール・ワイエルシュトラスは「限りなく近づく」というあいまいな表現は使わず、イプシロン-デルタ論法を用いて厳密に収束を定義した。これによれば、数列 {an} がある一定の値 α に収束するとは、次のようなことを言う(この場合はイプシロン-エヌ論法とも言う): 4 位相空間 5 圏論 つづく [] [ここ壊れてます]
931 名前:現代数学の系譜 雑談 mailto:sage [2020/06/17(水) 18:43:08.31 ID:m/mlsVi6.net] >>863 つづき 位相空間 点列の収束の概念は、一般の位相空間においても収束先の近傍系をもちいて定式化される。しかし、一般的な位相空間の位相構造は、どんな点列が収束しているかという条件によって特徴付けできるとは限らない。そこで、ネットやフィルターといった、点列を拡張した構成とその収束の概念が必要になる。任意の位相空間 X に対し、X 上で収束している(収束先の情報も込めた)フィルターの全体 CN(X) や、あるいは収束しているフィルターの全体 CF(X) を考えると、これらからは X の位相が復元できる。 圏論 詳細は「極限 (圏論)」を参照 参考2) https://ja.wikipedia.org/wiki/%E8%B6%85%E6%BA%96%E8%A7%A3%E6%9E%90 超準解析 1973年、直観主義者アレン・ハイティングは超準解析を「重要な数学的研究の標準モデル」だと賞賛した。[9] 参考3) https://mathtra∈.jp/cont∈ue 高校数学の美しい物語 関数の連続性と一様連続性 最終更新:2019/06/05 lim x→a f(x)=f(a) が成立するとき,関数 f(x) が x=a で連続という。 また,定義域(考えている区間内)の任意の点 a で関数 f が連続のとき,f を連続関数と呼ぶ。 関数の連続性のイメージ いきなり厳密な定義を書くとひるんでしますので,まずはイメージから。 関数が連続であるとは,直感的には「関数がつながっている,ちぎれていない」という意味です。 連続と一様連続の厳密な定義 連続関数の厳密な定義は冒頭の定義を ε-δ を使って書けばよいだけです。(ε-δ を用いた極限の定義ははさみうちの原理の証明を参照してください。) 連続性の定義: 考えている区間内の任意の実数 a と,任意の正の実数 ε に対して,ある δ が存在して「|x-a|<δ なら |f(x)-f(a)|<ε」が成立する。 つづく
932 名前:現代数学の系譜 雑談 mailto:sage [2020/06/17(水) 18:43:29.62 ID:m/mlsVi6.net] >>864 つづき 参考4) https://en.wikipedia.org/wiki/(%CE%B5,_%CE%B4)-def∈ition_of_limit (ε, δ)-def∈ition of limit Cont∈uity A function f is said to be cont∈uous at c if it is both def∈ed at c and its value at c equals the limit of f as x approaches c: lim _{x → c}f(x)=f(c) The (ε ,δ ) def∈ition for a cont∈uous function can be obta∈ed from the def∈ition of a limit by replac∈g 0<|x-c|<δ with |x-c|<δ to ensure that f is def∈ed at c and equals the limit. 参考5) https://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%97%E3%82%B7%E3%83%AD%E3%83%B3-%E3%83%87%E3%83%AB%E3%82%BF%E8%AB%96%E6%B3%95 ε-δ 論法 関数値の収束 ε は無限小とは異なり有限の値であるが、好きなだけ小さく選んでよいという条件が極限の概念を捉えることを可能にしているのである。 ここで何故、小さい数ばかり考えているのかと言えば、今のように ε2 < ε1 という大小関係を満たす 2 つの 正の数があったときに、 ε2 に対して δ2 を選んでおけば 0<|x-a|<δ2→ |f(x)-b| < ε2 < ε1 より、δ2 は ε1 に対する δ としても使えるからである。 小さい ε で δ を与えられるなら、それより大きい ε に対しても δ を与えられる。 逆に 小さい ε で δ が存在しない場合、任意の ε に対して、適当な δ が存在するという条件を満たさないため、 他の ε に対してどうであろうと、極限の存在を示すことはできない。 関数の連続性 実関数 f: R → R が lim _{x → a}f(x)=f(a) を満たすとき、 f(x) は x = a において連続であるという。 この極限の式は ε-δ 論法を用いて関数値の極限として定義される。 開区間 I = (p,q) 上の任意の点 a ∈ I において f(x) が連続であるとき f(x) は I 上で連続であるという。 これを ε-δ 論法で書くと ∀ε >0, ∀a∈ I, ∃δ >0 s.t. ∀x∈ I [|x-a|<δ → |f(x)-f(a)|<ε ] となる。 つづく
933 名前:現代数学の系譜 雑談 mailto:sage [2020/06/17(水) 18:43:50.04 ID:m/mlsVi6.net] >>865 つづき 参考6)(参考1の英文版) https://en.wikipedia.org/wiki/Limit_(mathematics) Limit (mathematics) The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory. See also ・Limit in category theory ・Direct limit ・Inverse limit (引用終り) 以上
934 名前:132人目の素数さん [2020/06/17(水) 19:25:22.30 ID:nNTE5mSe.net] >>863 大学1年の解析学でεδが理解できずに落ちこぼれた 数学負け🐕がなにワンワン吠えてんだw >lim x→a f(x)=f(a) で尽くされている おまえ、lim x→a f(x)をどう定義する気なの?w ∀ε >0, ∃δ >0 s.t. ∀x∈ I [|x-a|<δ → |f(x)-f(a)|<ε ] で定義するなら、まさにε、δじゃんwwwwwww >ε=1000000000000? アホの極みだろ? で?ε=0.000000000001 でδが存在すれば万事OK? それこそアホの極みだろ? あのな、εの大小の問題じゃねぇんだよ。 ε=0.000000000001 でδが存在しても もっと小さいεで、δが存在しないなら不連続なんだよ この工学ドカチンがwww 位相空間? おまえ、Rの位相どうやって定義する気だよ? 距離使うんだろ?それじゃεδと同じじゃん 圏論? εδのような初歩的論理すらわからんおまえに、 圏論が理解できるのかよ フィルタの定義すら理解できんくせに εδも分らん◆yH25M02vWFhPが したり顔して数学板に書くんじゃねえよw
935 名前:132人目の素数さん [2020/06/17(水) 19:27:41.46 ID:J/gmet3w.net] スレ主さんわかったのかと思ったのですが結局わかってなかったのですね。。。 >>866 f(x)=100(x-[x]) fがx=1/2で連続であること、およびf(x)が[-1,1]で一様連続でないことをεδ論法で示して見てください
936 名前:132人目の素数さん mailto:sage [2020/06/17(水) 19:35:32.16 ID:nNTE5mSe.net] >>864-865 inが∈に化けてるぞ キモチ悪っ!w >小さい ε で δ を与えられるなら、それより大きい ε に対しても δ を与えられる。 おまえ、この文章読んだか? 読んで理解したら 「ε=1000000000000? アホの極みだろ?」 なんて馬鹿丸出しな文章書かねぇよwwwwwww >逆に 小さい ε で δ が存在しない場合、 >任意の ε に対して、適当な δ が存在するという条件を満たさない いっとくが、「小さいε」でも「大きいε」でもδが存在しなかったらダメだぞw 例えば1/xはx=0で不連続だが、この場合どんなに大きいεでもδは存在しない
937 名前:132人目の素数さん [2020/06/17(水) 19:40:01.08 ID:nNTE5mSe.net] >>868 ◆yH25M02vWFhPは、 「位相空間ガー、フィルタガー、圏論ガー」 とかほざくがに、肝心の位相もフィルタも圏も 全然定義すら理解できないwww 超準解析?(ヾノ・∀・`)ムリムリ どんなに小さなεをとってきても、単独のεではεδは言えない なぜなら、「0より大きい最小のε」なんか存在しないからw
938 名前:132人目の素数さん [2020/06/17(水) 19:48:29.23 ID:J/gmet3w.net] >>868 この問題解いていただければ、εが表すのは縦で、横ではないという意味がわかっていただけるかなと思うのですがいかがでしょうかね
939 名前:哀れな素人 [2020/06/17(水) 21:40:53.96 ID:P8wUVKnT.net] やっとスレ主がその気になってくれたか(笑 >>858 まったくその通りである(笑 しかしこのバカどもには理解できないのだ(笑 ここのバカどもは、僕とスレ主が、 「小さなεを代入しさえすれば極限が証明できる」 と主張している、と思っているようだが、 僕もスレ主もそんなことは一言も言っていないのである(笑 われわれは単に、小さなεδでなければ連続も極限も証明できない、 と言っているだけである(笑 ところがお前らはεδ論法は 任意のεδで連続や極限が証明できると考えている(笑 それはアホだと言っているのだ(笑 分るか?(笑 で、お前らに訊くが、 なぜε-N論法やε-δ論法で数列や関数の極限が示せるのか(笑 まだ誰も答えていないのである、池沼少年もサル石その他のアホも(笑
940 名前:132人目の素数さん [2020/06/17(水) 21:42:54.77 ID:J/gmet3w.net] >>872 f(x)=100(x-[x]) fがx=1/2で連続であること、およびf(x)が[-1,1]で一様連続でないことをεδ論法で示して見てください
941 名前:哀れな素人 [2020/06/17(水) 21:43:37.80 ID:P8wUVKnT.net] イプシロン-デルタ論法 - Wikipedia ε は任意に選べるので好きなだけ小さくとっておき ε は任意に選べるので好きなだけ小さくとっておき ε は任意に選べるので好きなだけ小さくとっておき ε は任意に選べるので好きなだけ小さくとっておき ε は任意に選べるので好きなだけ小さくとっておき ↑εは小さく取らなければ意味がないことが分るだろ(笑 「任意だからどんな巨大な数でもいい」とバカ丸出し発言を 延々と続けている池沼ども(笑
942 名前:哀れな素人 [2020/06/17(水) 21:51:00.72 ID:P8wUVKnT.net] fがx=1/2で連続であることなどε-δ論法など使わなくても分るだろ(笑 で、何が言いたいのか(笑 お前の読んだ本に書いてあったから 知ったかぶりして利口ぶりたいのか池沼(笑
943 名前:132人目の素数さん [2020/06/17(水) 21:55:46.75 ID:J/gmet3w.net] 一様連続はわからないんですね
944 名前:哀れな素人 [2020/06/17(水) 22:03:25.66 ID:P8wUVKnT.net] 一様連続などわからないし、わかろうとも思わない(笑 で、x、yの範囲は分ったのか、池沼(笑 なぜε-N論法やε-δ論法で数列や関数の極限が示せるか、分かったのか池沼(笑 お前はお前の読んだ本にお前の挙げた関数の ε-δ論法による証明が載っていたから、 知ったかぶりして利口ぶってその証明をコピペすることはできるが、 なぜε-N論法やε-δ論法で数列や関数の極限が示せるか、 は説明できないのである(笑 お前がその程度のレベルのアホであることはとっくに分っている(笑
945 名前:132人目の素数さん [2020/06/17(水) 22:06:01.72 ID:J/gmet3w.net] 一様連続はxの範囲に気をつけて連続を考えましょうということなので、もしかしたら安達さんの理解につながるかなと思ったのですが
946 名前:哀れな素人 [2020/06/17(水) 22:10:35.29 ID:P8wUVKnT.net] お前らはεδ論法で極限を証明する方法だけは知っているのだ(笑 how toだけは知っている(笑 なぜならお前らの教科書にその方法が載っていたから(笑 しかしお前らはwhyを知っていない(笑 なぜεδ論法で極限を証明できるのか、が分っていない(笑 お前らの教科書を読めばその理由が分るはずだが、 お前らはアホだから理解できなかったのだ(笑 ちょうど質問少年のような池沼が 動画を見ても理解できなかったように(笑
947 名前:132人目の素数さん [2020/06/17(水) 22:11:47.13 ID:J/gmet3w.net] how も whyも知らない人が何か言ってますねー
948 名前:粋蕎 mailto:sage [2020/06/17(水) 22:17:08.46 ID:i4g4edZz.net] 5W1Hはもう古い、時代は6W2Hを経て7W3Hじゃ
949 名前:哀れな素人 [2020/06/17(水) 22:26:16.37 ID:P8wUVKnT.net] >how も whyも知らない人が何か言ってますねー これが池沼少年というド低脳の白痴だ(笑 このバカは「任意だからどんな巨大な数でもいい」と考えたのだ(笑 アホの見本だ(笑 なぜεδ論法で極限を証明できるのか、に 未だに答えられないアホ野郎だ(笑 野郎というより女のような奴だ(笑 大学を卒業して以来一度も働かずにニートをしているクズ野郎だ。
950 名前:哀れな素人 [2020/06/17(水) 22:32:50.81 ID:P8wUVKnT.net] y=x^2で、x→2のときy→4をεδ論法で証明するとして、 ε=1000000のようなεを取る必要はまったくないし、 ε=1000000ではy→4は示せないのである(笑 こんなことすら分っていない池沼が 「任意だからどんな巨大な数でもいい」 というバカ発言をドヤ顔で主張し続ける(笑 ε-N論法やε-δ論法の原理も分らずに、 「任意」と書いてあるから「どんな巨大な数でもいい」 と考えた池沼が延々と「どんな巨大な数でもいい」 と主張し続ける(笑 その池沼の代表が、この質問少年というアホ野郎だ(笑 そしてこのアホ野郎をと支持するバカがゴロゴロいるのだ2chには(笑 池沼の相手はここまで(笑
951 名前:132人目の素数さん [2020/06/17(水) 23:06:10.40 ID:J/gmet3w.net] >>883 >ε=1000000のようなεを取る必要はまったくないし、 >ε=1000000ではy→4は示せないのである(笑 示せないのなら、必要はないというのではなく、はっきりとダメだと言っていただきたいのですけどねぇ
952 名前:132人目の素数さん [2020/06/18(木) 00:13:19.04 ID:ymukA3Vi.net] >>853 >ε=100000000では極限は示せないのだバカ(笑 ε=100000000で極限が示せると誰が言ったんだ? おまえは字も読めんのか、おまえに数学は早い、国語からやり直せこのバカタレが
953 名前:132人目の素数さん [2020/06/18(木) 00:21:38.28 ID:ymukA3Vi.net] 大学一年4月にεδ論法の授業について行けず落ちこぼれた瀬田がまーたアホなこと言ってるな いつも言ってるだろ?分からないなら黙ってろと なんでおまえは人の忠告を素直に聞けないんだ?
954 名前:132人目の素数さん [2020/06/18(木) 00:25:58.14 ID:ymukA3Vi.net] >>883 だから「ε=1000000でもいい」は「ε=1000000で極限が示せる」とは違うと何度言わせんだこのバカタレが おまえは国語からやり直せ 日本語が分からんアホめ
955 名前:132人目の素数さん [2020/06/18(木) 00:27:50.79 ID:ymukA3Vi.net] そもそも安達は数学書を読んだことも無いのになんでεδ論法が分かってる気でいるのか? キチガイかよ
956 名前:132人目の素数さん mailto:sage [2020/06/18(木) 01:57:22.03 ID:nItCsY+W.net] >>887 「任意の」の意味を理解していないのですよ、この御仁(>>883 )は。 ε>0 であれば、いくらでも小さいεをとれる( 任意の、ですからね)、ということがポイントではあるのですが。
957 名前:132人目の素数さん [2020/06/18(木) 02:42:53.47 ID:ymukA3Vi.net] 安達よ 教科書に載ってるlim[n→∞]1/10^n=0の証明に深い内容が含まれてるなら おまえの本は教科書のパクリか? おまえが本を出す意味あんのか?
958 名前:132人目の素数さん [2020/06/18(木) 06:05:47.77 ID:Jb/OqBTT.net] >小さなεδでなければ連続も極限も証明できない、 上記の対偶は 連続や極限が証明できるならば、εδが小さい となるが、誤りだ いかにεが小さくとも、単独のεしか考えない限り ε以上のEについてδが存在する、としか言えない
959 名前:哀れな素人 [2020/06/18(木) 07:20:05.06 ID:MxPdiRSx.net] 依然として池沼の巣(笑 ε=100000000では極限は示せないのだから、 ε=100000000ではダメなのである(笑 ε=100000000と取りたければ取ってもいいが、 そんなものは何の意味もないし無駄なのである(笑 >いくらでも小さいεをとれる( 任意の、ですからね)、ということがポイントではあるのですが。 それが分っているなら、なぜ 「任意だからどんな巨大な数でもいい」などと言うのか(笑
960 名前:哀れな素人 [2020/06/18(木) 07:22:01.32 ID:MxPdiRSx.net] >単独のεしか考えない限り お前、>>872 も読めないのか(笑 僕もスレ主も単独のεさえ代入すれば証明できる、 などとは一言も言っていないのである(笑 だからお前らに訊いているのだ、 なぜε-N論法やε-δ論法で数列や関数の極限が示せるのか、と(笑 ところが池沼少年その他は決してこれに答えないのだ(笑 分っていないからだ(笑 分っているなら「任意だからどんな巨大な数でもいい」 などと発言するはずがないのだ(笑 今朝は用があるのでここまで(笑 池沼の相手は時間の無駄(笑
961 名前:哀れな素人 [2020/06/18(木) 07:26:00.66 ID:MxPdiRSx.net] おまけ(笑 イプシロン-デルタ論法 - Wikipedia ε は任意に選べるので好きなだけ小さくとっておき ε は任意に選べるので好きなだけ小さくとっておき ε は任意に選べるので好きなだけ小さくとっておき ε は任意に選べるので好きなだけ小さくとっておき ε は任意に選べるので好きなだけ小さくとっておき ↑この文章の意味が分るか? 池沼ども(笑
962 名前:132人目の素数さん [2020/06/18(木) 10:09:28.91 ID:ymukA3Vi.net] >>892 >ε=100000000では極限は示せないのだから、 >ε=100000000ではダメなのである(笑 どんなε値ならいいのか具体的に答えよ
963 名前:132人目の素数さん [2020/06/18(木) 11:41:11.93 ID:Zq7w1z9G.net] 最初は、極限を示せなくともダメではなかったのに、 後になると、極限を示せないからダメだと言い出す安達 >大きくなったらダメとも、εが巨大だとダメとも言っていない(笑>>180 ↓↓↓後日↓↓↓ >ε=100000000では極限は示せないのだから、 >ε=100000000ではダメなのである(笑>>892
964 名前:132人目の素数さん [2020/06/18(木) 12:00:50.99 ID:Zq7w1z9G.net] >>893 >僕もスレ主も単独のεさえ代入すれば証明できる、 >などとは一言も言っていないのである(笑 それが分かってる者はεのでかさにツッコミ入れないので、入れた時点で、 安達の「微小」、スレ主の「ナンセンスでない数」といった数があって、 それを用いれば示せるが、でかいと示せない、そのように考えてるのがモロバレだよ
965 名前:132人目の素数さん [2020/06/18(木) 13:10:37.56 ID:Zq7w1z9G.net] >>893 >僕もスレ主も単独のεさえ代入すれば証明できる、 >などとは一言も言っていないのである(笑 それが分かっている人間が、しかも、 「ε=1000000でもいい」は「ε=1000000で極限が示せる」だと考える人間が、 「ε=aのとき成り立つ→任意のεで成り立つ」なる偽命題を見たとき、 aの大小に突っ込むのは変なんだよ ツッコミ所は論理そのもので、aの大小は無関係だからだ
966 名前:132人目の素数さん [2020/06/18(木) 14:08:18.61 ID:ymukA3Vi.net] 安達はつべこべ言わずにlim[n→∞]1/10^n=0を証明すりゃいいんだよ そうすればどんなアホな勘違いしてるか一発で明らかに
967 名前:なる 深い内容が含まれてるとか言い訳して逃げるのもたいがいにしろ [] [ここ壊れてます]
968 名前:132人目の素数さん [2020/06/18(木) 14:10:48.79 ID:ymukA3Vi.net] 大学一年4月に習うεδ論法も理解できないのになんで高等な数学用語並べて利口ぶりたがるのかね?瀬田って
969 名前:132人目の素数さん [2020/06/18(木) 14:29:22.64 ID:VKWviske.net] 安達さんの間違えなんて明らかじゃないですか 極限だから微小だと思ってるそれだけ εδの考え方はなーんにもわかってない 極限だから微小量が関連するんだろうなーってだけの認識ですよ
970 名前:132人目の素数さん [2020/06/18(木) 14:35:48.99 ID:ymukA3Vi.net] それはそうだけどどんなブザマな証明書くのか見てみたいw
971 名前:132人目の素数さん [2020/06/18(木) 14:40:11.51 ID:VKWviske.net] 書けないからいつまでたっても同じこと繰り返し書き込んでるわけですね
972 名前:132人目の素数さん [2020/06/18(木) 14:45:34.32 ID:ymukA3Vi.net] まあでも安達は尊大な態度のくせに実際はチキン野郎なので絶対に書かないでしょうね なんだかんだと言い訳して逃亡し続けるでしょう 教科書の丸写しでいいから書けと言っても逃亡するくらいですからw
973 名前:132人目の素数さん [2020/06/18(木) 14:49:23.50 ID:ymukA3Vi.net] 安達よ 「教科書に深い内容が書いてある」は矛盾だと気付かないのか? 教科書とは誰の目にも触れるものである 誰の目にも触れるものはネット上に公表できない深い内容たりえないのである。 小学生のような言い訳してないで早く証明を書け
974 名前:132人目の素数さん [2020/06/18(木) 16:18:42.70 ID:Jb/OqBTT.net] >>894 >ε は任意に選べるので好きなだけ小さくとっておき 誤解が明らかなので、さっそく修正したヤツがいるなw さて、単独のεでδが存在して |x-a|<δ ⇒ |f(x)-f(a)|<ε といえても、εより小さいεmでは、対応するδの存在がいえないが 0に収束する単調減少数列ε_nの各項について、対応するδ_nが存在して |x-a|<δ_n ⇒ |f(x)-f(a)|<ε_n といえるなら、任意のε>0に対応するδの存在がいえる なぜならいかなるε>0についても あるNが存在してε>=ε_N となるから その場合δ_Nをとれば |x-a|<δ_N ⇒ |f(x)-f(a)|<ε_N<=ε が云える これぞεNを利用したεδの証明( ̄ー ̄)ニヤリ
975 名前:132人目の素数さん [2020/06/18(木) 16:24:51.51 ID:WzX/CMzM.net] 数学掲示板群 ttp://x0000.net/forum.aspx?id=1 学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net 数学 物理学 化学 生物学 天文学 地理地学 IT 電子 工学 言語学 国語 方言 など PS 連続と離散を統一した! ttp://x0000.net/topic.aspx?id=3709-0 微分幾何学入門 ttp://x0000.net/topic.aspx?id=3694-0
976 名前:132人目の素数さん [2020/06/18(木) 16:52:43.01 ID:ymukA3Vi.net] >>894 >ε は任意に選べるので好きなだけ小さくとっておき おまえが取らんとする値を具体的に述べよ
977 名前:132人目の素数さん mailto:sage [2020/06/18(木) 23:40:30.24 ID:WAoh/q5X.net] >>894 数学を勉強してね、としか言えないな。あるいは国語を。 任意に選べる、というところがポイントであって、数字の大きい小さいは本質的じゃないことが解らないようだね。 極限に関する議論では、幾らでも小さい任意の数を選ぶ、という「操作」が出来る、というのが重要なの。 これは絶対値の議論ではなく、比較級での議論だ。 εに代入する具体的な数字など、言ってしまえばどうでもいい。 ε=1000000だろうが、ε=0.000000001だろうが、そこに本質的な差はない。 だから皆がこいつの論法に違和感を感じるんだよな。
978 名前:132人目の素数さん [2020/06/19(金) 00:06:43 ID:s0TsnD44.net] 10^10は10^0の10^10倍大きいが 10^0も10^(-10)の10^10倍大きい その10^(-10)も10^(-20)の10^10倍大きい 結局どんなεを取ってもそれは巨大でもあり微小でもある、なぜなら巨大も微小も相対的にしか意味が無いから 安達や瀬田はバカなのでそんなことすら分からない
979 名前:132人目の素数さん [2020/06/19(金) 00:10:33.37 ID:s0TsnD44.net] {ε∈R|ε>0}には最小値も最大値も存在しない よっていかなる絶対値も存在しない
980 名前:132人目の素数さん mailto:sage [2020/06/19(金) 06:05:31.43 ID:3OKw5Gzv.net] >>909
981 名前: >任意に選べる、というところがポイントであって そうか?「選ぶ」必要ある? 任意のεについて、δが存在するのがポイントだろ? >幾らでも小さい任意の数を選ぶ、という「操作」が出来る なんで「選ぶ」の? あるεについて、δが存在すれば、ε以上のEについては、みなδが存在する つまり反例があるとしればε未満しかない で、もしいかなるεについても、δが存在するなら、 いくら小さいεをとってきても、反例にはならない そういうことでしょ? >数字の大きい小さいは本質的じゃない >εに代入する具体的な数字など、言ってしまえばどうでもいい。 >ε=1000000だろうが、ε=0.000000001だろうが、そこに本質的な差はない。 まったくその通り どんなεを「選んで」も、結局ε以上のEについてδが存在する、としかいえない じゃ、任意のεについて、δが存在する、というにはどうするか? その一つの答えが、>>906 だな [] [ここ壊れてます]
982 名前:132人目の素数さん mailto:sage [2020/06/19(金) 06:17:07.01 ID:3OKw5Gzv.net] >>910 ある自然数NについてPが成り立つ場合に、 N以下のMについてはすべてPが成り立つとする さて、任意の自然数nについてPが成り立つ、といいたい場合に ある一つの自然数NについてPが成り立つといえばいいような そんな都合のいい「無限大」自然数Nは存在するか? もちろん、存在しない 最大の自然数は存在しないから 同様に、ある正の実数ε>0についてPが成り立つ場合に、 ε以上のEについてはすべてPが成り立つとする さて、任意の正の実数ε>0についてPが成り立つ、といいたい場合に ある一つの正の実数ε>0についてPが成り立つといえばいいような そんな都合のいい「無限小」実数ε>0は存在するか? もちろん、存在しない 最小の正の実数は存在しないから
983 名前:132人目の素数さん mailto:sage [2020/06/19(金) 06:17:53.12 ID:3OKw5Gzv.net] 安達氏は無限否定論者だから、>>913 の主張を否定することはないだろう 一方セタこと◆yH25M02vWFhPは、軽率な馬鹿野郎だから 「無限大自然数も無限小実数も存在する!!!」 と絶叫するに違いないw 彼はペアノの自然数の公理も、 カントルやデデキントの実数の公理も 平気で否定するだろうな 「俺が数学だ!!!」とか●違い丸出しなこといって(嘲) 大学1年の解析学の講義で落ちこぼれる工学馬鹿が 「数学」なわけないだろwwwwwww
984 名前:哀れな素人 [2020/06/19(金) 08:12:53.42 ID:kLFGScce.net] 質問少年、サル石の二大バカ以外に 少しはまともな奴も出て来たようだな(笑 lim[n→∞]1/10^n=0 この理由を質問少年とサル石は書いてみよ(笑 >>906 ε-N論法とε-δ論法を混同しているバカ(笑 >>910 任意に選べるということがポイントではなく、 幾らでも小さく選べるということがポイントなのである(笑 巨大なεでは連続も極限も示せないのである(笑 巨大なεを取っても意味がないし無駄なのである(笑 分るか?(笑 僕は巨大なεを取るのは論理的に間違いだ、 と言ったことは一度もないのである(笑 分るか?(笑
985 名前:哀れな素人 [2020/06/19(金) 08:18:53.23 ID:kLFGScce.net] 実際問題として、1より大きいεやδを取る必要はないし、 そんなεやδを取っても意味がないし無駄なのだが、 そのこと、お前ら、分っているのか?(笑 で、お前らに訊くが、 なぜε-N論法やε-δ論法で数列や関数の極限が示せるのか(笑 未だ誰一人としてこの問いに答えていない(笑
986 名前:粋蕎 mailto:sage [2020/06/19(金) 08:29:39.50 ID:LXFRwsRT.net] Riemann球面で言えば 1 ─── 1 ─ 0 0 = ── 1 = 0
987 名前:132人目の素数さん [2020/06/19(金) 09:04:31 ID:3OKw5Gzv.net] >>915 >ε-N論法とε-δ論法を混同している・・・ 実はしていない ε-δ論法による関数の極限の定義を証明するのに ε-N論法による数列の極限の定義を満たす数列を使っている というだけの話 >幾らでも小さく選べるということがポイントなのである 選べる、といった瞬間に、一つだけ選べばいい、と聞こえるのがダメ 幾らでも小さい正の実数εが存在する、というのがポイント >巨大なεでは連続も極限も示せないのである 「巨大な」という形容詞は無意味 「巨大な」εだろうが、「微小な」εだろうが、 「単独の」εでは、連続も極限も示せない いくらでも小さくなる数列が必要 そして、いかなる正の実数εをとってきても 数列の項のなかにεより小さいものが存在する必要がある そのような数列の各項について対応するδが存在するなら いかなる正の実数εをとってきても必ずδが存在するといえる
988 名前:132人目の素数さん [2020/06/19(金) 09:06:34 ID:3OKw5Gzv.net] >なぜε-N論法やε-δ論法で数列や関数の極限が示せるのか 数列や関数の極限をε-N論法やε-δ論法で定義したからw ここで、もし 「なぜε-N論法やε-δ論法で数列や関数の極限が定義できるのか?」 という問いを発するなら、こう答えるだけ 「それは数学の問いではない」
989 名前:132人目の素数さん [2020/06/19(金) 09:11:24.00 ID:3OKw5Gzv.net] >>916 もし、不連続だと証明するのであれば、 δが存在しないεを示せばいいだけであって その場合、反例としてのεが1より大きくても問題ない (もちろん、1が反例になり得ない場合には 1以上のεを反例として示そうとするのは無意味だが) 逆に連続だと証明するのであれば、 0.1だろうが0.01だろうが0.001だろうが 単独のεについてδの存在を示す
990 名前:フは無意味 要するに1つのεを選ぶ、という発想では 決して連続性も極限も証明できない [] [ここ壊れてます]
991 名前:132人目の素数さん [2020/06/19(金) 09:37:09.20 ID:s0TsnD44.net] >>915 屁理屈はいいのでさっさとlim[n→∞]1/10^n=0の証明を書け
992 名前:哀れな素人 [2020/06/19(金) 11:20:01.35 ID:kLFGScce.net] ID:3OKw5Gzv 依然として何にも分かっていないバカ(笑 僕もスレ主も「一つだけ選べばいい」とか、 「単独のεで証明できる」などと言ったことは一度もない(笑 >なぜε-N論法やε-δ論法で数列や関数の極限が示せるのか お前の答えは答えになっていない(笑 εが1より大きければ不連続だと証明できない場合があるのである(笑 分るか?(笑 εが1より大きくても不連続だと証明できるなら、 εが1より小さくても証明できるのだから、 1より大きいεを取る必要はないのである(笑 分るか?(笑
993 名前:哀れな素人 [2020/06/19(金) 11:21:21.84 ID:kLFGScce.net] >>921 n→∞のとき1/n→0 とか、n→∞のとき1/10^n→0 とか、 そんなことはJKでも分ることだから いちいち説明する必要はないのである(笑 お前がこんなことの説明を要求しているということは、 お前が何かとんでもないまぬけなことを考えているとしか思えないのだ(笑 だからお前にその理由を書けと逆質問しているのである(笑 だから答えてみよ、なぜ、n→∞のとき1/10^n→0 なのか(笑 またn→∞のとき1/10^nは0になるのか、ならないのか(笑
994 名前:132人目の素数さん [2020/06/19(金) 11:30:00.28 ID:kwvIgBRH.net] >>922 >εが1より大きければ不連続だと証明できない場合があるのである(笑 例をお願いします
995 名前:132人目の素数さん mailto:sage [2020/06/19(金) 12:36:05.00 ID:3OKw5Gzv.net] >>922 >εが1より大きければ不連続だと証明できない場合があるのである それはεが10の場合でも、0.1の場合でも同じ しかし、ある1つの値について、δの非存在が示せれば不連続だと分かる
996 名前:132人目の素数さん [2020/06/19(金) 12:40:55.99 ID:3OKw5Gzv.net] 逆に、 「εとしてこの値をとれば不連続な場合δが存在しないと証明できる」 という究極の値は存在しない なぜなら、そのような値ε_minがあったと仮定して それより小さな値が存在するから、 ε_minでδが存在するのに、不連続となる関数 を具体的に構成できる ああ、下らん 文学部も工学部も 実数のジの字もわからん正真正銘の🐎🦌ばっかだな
997 名前:132人目の素数さん [2020/06/19(金) 13:21:29.82 ID:s0TsnD44.net] >>923 どうしておまえはいつもいつも言い訳ばかりなのか?黙って証明すればいいのである 言い訳するということは、おまえ実は何も分かってないことを分かってるんじゃないのか? でもそれは瀬田よりは利口だぞ?瀬田は分かってないことすら分かってないから
998 名前:132人目の素数さん [2020/06/19(金) 13:38:25.01 ID:s0TsnD44.net] >>916 >実際問題として、1より大きいεやδを取る必要はないし、 >そんなεやδを取っても意味がないし無駄なのだが、 >そのこと、お前ら、分っているのか?(笑 分かってないのはおまえ εを取ること自体が無意味。 なんで任意のε>0について示さなければいけないのに特定のεを取るんだよw
999 名前:132人目の素数さん [2020/06/19(金) 13:57:21.12 ID:qXfDhvSl.net] たとえ 「任意のεに対して」 と書いても任意性は担保されないんだな〜♪ じゃあどうやって全称命題を証明するのか 全称命題は対偶をとるか背理法でしか示せない 間接証明しかできないのだ
1000 名前:132人目の素数さん [2020/06/19(金) 14:01:34.69 ID:s0TsnD44.net] どんなに小さい正数を取っても、それより小さい正数が存在するのだから、特定の正数を取ることはまったく無意味 こんな簡単なことが分からない安達は池沼
1001 名前:132人目の素数さん [2020/06/19(金) 14:03:58.30 ID:s0TsnD44.net] >>929 これは酷い
1002 名前:132人目の素数さん [2020/06/19(金) 14:09:11.88 ID:s0TsnD44.net] タブローくん相変わらずだなw
1003 名前:132人目の素数さん [2020/06/19(金) 14:10:26.79 ID:qXfDhvSl.net] 新妻弘のワンポイント部分集合の証明方法 A⊂Bを示したい そのために ∀a(a∈A→a∈B) を示す そこで b∈Aをとる ……(略) b∈Bである b∈Aは勝手に選んだので ∀a(a∈A→a∈B) が示された こんな奴の『群・環・体』は捨てろw
1004 名前:132人目の素数さん [2020/06/19(金) 14:15:07.31 ID:s0TsnD44.net] >>922 >>なぜε-N論法やε-δ論法で数列や関数の極限が示せるのか >お前の答えは答えになっていない(笑 安達よ 人に頼らず自分で勉強しろ 何人たりともおまえに教えることはできない なぜならおまえには教えられたことを理解できるだけの学力が無いからだ なんでおまえはそこまで勉強嫌いなのか?
1005 名前:132人目の素数さん [2020/06/19(金) 14:25:40.44 ID:s0TsnD44.net] サイコロの目を勝手に選ぶ 1が選ばれた 1は勝手に選んだのでサイコロの目はすべて1である
1006 名前:132人目の素数さん [2020/06/19(金) 14:30:54.22 ID:qXfDhvSl.net] ・長方形と正方形問題 長方形と正方形の包含関係 ・曲線と直線問題 曲線と直線の包含関係 それぞれ全称命題で示してみるとよい 答えは両者の間に等号が成立する もちろん対偶のとり方によっては片側包含関係しか成立しないが そうすると同じ方法を採る限り今度は別のケースで等号が示せなくなる というジレンマが起こる 対偶法も完璧ではない
1007 名前:132人目の素数さん [2020/06/19(金) 14:31:08.76 ID:ud1WW8US.net] 数学掲示板群 ttp://x0000.net/forum.aspx?id=1 学術の巨大掲示板群 - アルファ・ラボ ttp://x0000.net 数学 物理学 化学 生物学 天文学 地理地学 IT 電子 工学 言語学 国語 方言 など PS 連続と離散を統一した! ttp://x0000.net/topic.aspx?id=3709-0 微分幾何学入門 ttp://x0000.net/topic.aspx?id=3694-0
1008 名前:132人目の素数さん [2020/06/19(金) 14:41:56.76 ID:qXfDhvSl.net] >>935 今は部分と全体の話だ そのたとえを用いると {1,2,3,4,5,6} から「任意に」選んで1が出たとしよう {1}⊂{1,2,3,4,5,6} という話に過ぎない これでは任意性の問題になってない 同じサイコロで考えてみると 大小2つのサイコロが在る 私は大から勝手にサイコロの目を選ぶ これが1だったとする このとき私は勝手に選んだので 大は小を兼ねる が成立する こんな証明を代数学でやらかしているのが新妻弘とその本を読んでいる者
1009 名前:132人目の素数さん [2020/06/19(金) 15:39:19.33 ID:3OKw5Gzv.net] >>929 >どうやって全称命題を証明するのか fが具体的に分かってるんだから εの関数となるδ(ε)を具体的に構成して |x-a|<δ(ε) ⇒ |f(x)-f(a)|<ε (連続性の場合) もしくは |x-a|<δ(ε) ⇒ |f(x)-b|<ε (極限の場合) を証明したらいいだろう 頭悪いのか?
1010 名前:132人目の素数さん [2020/06/19(金) 15:50:38.73 ID:3OKw5Gzv.net] >>933 君、普遍汎化、全然理解してないだろ https://ja.wikipedia.org/wiki/%E6%99%AE%E9%81%8D%E6%B1%8E%E5%8C%96