[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 01/12 17:43 / Filesize : 381 KB / Number-of Response : 1047
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

分からない問題はここに書いてね452



1 名前:132人目の素数さん [2019/04/12(金) 23:52:40.62 ID:gmhbIVI0.net]
さあ、今日も1日がんばろう★☆

前スレ
分からない問題はここに書いてね451
https://rio2016.5ch.net/test/read.cgi/math/1551021871/

(使用済です: 478)

813 名前: mailto:sage [2019/05/05(日) 17:25:53.91 ID:FzmaX9Wr.net]
なんつー大学

814 名前:イナ mailto:sage [2019/05/05(日) 17:40:14.65 ID:ZYNb3jgv.net]
>>771
>>776Aは松竹梅の3つの部屋のどれかに入る。
BはAがどの部屋に入ったか知らないし、わかった

815 名前:ところで選び方は3つに変わりない。よって松竹梅の3つの部屋のどれかに入る。
同様にCが入り、Dが入るが入る順番は関係ない。
3^4=81(通り)の組み合わせがある。これを季語とか入れて物語風に組み立てればいいんじゃないか?
[]
[ここ壊れてます]

816 名前:132人目の素数さん [2019/05/05(日) 17:52:56.94 ID:plGrMVTn.net]
問題文でわざわざ人に名前をつけたのに、教室に名前をつけないのはなぜなんだろう

817 名前:イナ mailto:sage [2019/05/05(日) 18:10:24.62 ID:ZYNb3jgv.net]
>>778
>>779よその教室まちがえて入ったら形は同じだけどなんか雰囲気ちがうからわかるよね。

818 名前:132人目の素数さん mailto:sage [2019/05/05(日) 18:18:54.07 ID:x9dk3IyX.net]
そこから説明が必要なのか

819 名前: mailto:sage [2019/05/05(日) 18:26:54.25 ID:FzmaX9Wr.net]
まぁ3つに分けるではなく3つの教室って言ってるから全員部屋Xと全員部屋Yは区別するんだろ?
こんなの大学のレポートとして有り得るもんかね?

820 名前:132人目の素数さん [2019/05/05(日) 18:46:32.39 ID:/7ZktMw4.net]
そういうことじゃなくて、その後のお話に必要もないのに、なんで人に名前をつけたのかが謎

821 名前:132人目の素数さん mailto:sage [2019/05/05(日) 18:56:07.88 ID:60xC0qnI.net]
>>783
いやそういうことじゃなくてね



822 名前: mailto:sage [2019/05/05(日) 19:59:26.44 ID:ZYNb3jgv.net]
>゚⌒⌒⌒~彡〜名前?
>゚⌒⌒~彡〜前>>780
>゚⌒⌒~彡〜知らなくて
|   __________よくね
| ∩∩ ∩∩  /\?
|((^o^)^o^)) / 「
|(`っu~U⌒U、//|
| ‖υυ~UU~‖ |
| ‖ □ □ ‖ |
∠‖____‖/|
 ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ ‖ |
______‖/|
 ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ ‖ |
______‖/|
 ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □ ‖ |
______‖/|
 ̄ ̄ ̄ ̄ ̄ ̄‖ |
□ □ □,彡ミ、|
_____川`,`;,'
______U⌒U、;,
/_/_/_/;_~U U~_;
/_/_/_/_○_/_
/_/_/_/_/_/_/_/_/_/_/_/

823 名前:132人目の素数さん mailto:sage [2019/05/05(日) 20:43:10.83 ID:kB9uA+wQ.net]
Aが対角化可能
A=B^3 を満たすBを求める

この問題の方針教えてくださいまし

824 名前:132人目の素数さん mailto:sage [2019/05/05(日) 20:44:54.43 ID:kB9uA+wQ.net]
>>786
文脈からわかると思うけど、行列ね

825 名前:132人目の素数さん mailto:sage [2019/05/05(日) 20:51:25.63 ID:kB9uA+wQ.net]
>>786
あ、わかった

826 名前:132人目の素数さん mailto:sage [2019/05/05(日) 21:59:20.28 ID:qhGmwpjK.net]
n個の自然数の4乗の総和を求めよ


解けるか?

大学受験サロン板より

827 名前:132人目の素数さん mailto:sage [2019/05/05(日) 22:09:20.16 ID:wEOXJMXr.net]
問題が意味不明

828 名前:132人目の素数さん mailto:sage [2019/05/05(日) 22:51:15.24 ID:FzmaX9Wr.net]
Σ[k:1〜n] k^4 ではなかろうか?
https://ja.m.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A6%E3%83%AB%E3%83%8F%E3%83%BC%E3%83%90%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F

829 名前:132人目の素数さん [2019/05/05(日) 23:06:58.98 ID:NdzFL6Yj.net]
Fランでもなければ Σ[k=1,n] k^4 じゃ試験にならないな
k^7 くらいが妥当か

830 名前:132人目の素数さん mailto:sage [2019/05/05(日) 23:19:07.27 ID:gSnwaaqK.net]
f(n) = Σ[k=1 to n] {5^(3k)+5^(2k)+5^(k)+1}
について、f(n)を13で割った余りをnの値により分類せよ。

831 名前:132人目の素数さん mailto:sage [2019/05/05(日) 23:20:54.96 ID:x9dk3IyX.net]
ニュートン補間で8次式で近似しておしまいでいいか
まとめる時に計算ミスする自信はある



832 名前:132人目の素数さん mailto:sage [2019/05/06(月) 00:23:37.36 ID:KB/kI55Y.net]
任意の自然数nに対して
Σ[k=1 to n] k^a = ( Σ[k=1 to n] k^b )^2
を成立させる自然数の組(a,b)を考える。

(1)この等式を成立させる(a,b)を一組求めよ。答えのみで良い。

(2)この等式を成立させる(a,b)は(1)で求めた一組のみであることを証明せよ。

833 名前:132人目の素数さん mailto:sage [2019/05/06(月) 00:55:23.29 ID:ldSyxuL0.net]
最高次比較して
a+1=(b+1)^2
a+1=2(b+1)

834 名前:132人目の素数さん mailto:sage [2019/05/06(月) 02:31:52.91 ID:NFa7uh6I.net]
5^2 = 25 ≡ -1 (mod 13)
5^3 ≡ -5 (mod 13)
5^4 ≡ 1 (mod 13)

k≡0(mod 4) のとき 5^k ≡ 1 (mod 13)
k≡1(mod 4) のとき 5^k ≡ 5 (mod 13)
k≡2(mod 4) のとき 5^k ≡ -1 (mod 13)
k≡3(mod 4) のとき 5^k ≡ -5 (mod 13)

k≡0 (mod 4) のとき
5^(3k) + 5^(2k) + 5^k + 1 ≡ 4 (mod 13)
k≠0 (mod 4) のとき
5^(3k) + 5^(2k) + 5^k + 1 ≡ 0 (mod 13)

f(n) = 4・(n以下で

835 名前:ある4の倍数の数) = 4 [n/4] = n - 4 {n/4},

13 {f(n)/13} = 13 { 4[n/4] / 13 }
[]
[ここ壊れてます]

836 名前:132人目の素数さん mailto:sage [2019/05/06(月) 07:37:08.60 ID:NFa7uh6I.net]
>>753
 (√5 + √3)^2 = 8 + 2√15
 = 8 + 8√(1 - 1/16)
 ≦ 8 + 8(1 - 1/32)
 = 16 - 1/4
 = 16(1 - 1/64),

 √5 + √3 ≦ 4(1 - 1/128) = 4 - 1/32 = 3.96875

 √5 + √3 = 3.968118785

837 名前:132人目の素数さん mailto:sage [2019/05/06(月) 12:46:43.71 ID:YploJWAA.net]
>>794
連立方程式で8次式の係数を求めるのと
どっちが手間だろう?

838 名前:132人目の素数さん mailto:sage [2019/05/06(月) 13:58:24.78 ID:8MZl204B.net]
>>799
そりゃ最悪整理されていない状態でも使える補間法を使った方が楽だわな
整理しなくちゃならないにしても、8元の連立方程式を解くよりは多分楽。
どのくらいのオーダーで楽になるのかは数学専門の人ならわかるんじゃないのかしら。

839 名前:132人目の素数さん mailto:sage [2019/05/06(月) 14:29:53.30 ID:+eOEuK1l.net]
リチャードファインマンの

ファインマン経路積分と量子力学 (ADVANCED PHYSICS LIBRARY)

という本を所有している人はいますか?

840 名前:132人目の素数さん mailto:sage [2019/05/06(月) 14:51:31.06 ID:fTK4RMPl.net]
>>801
原著なら持ってる

841 名前:132人目の素数さん mailto:sage [2019/05/06(月) 15:56:43.66 ID:/HzE0CkH.net]
ご冗談でしょう、ファインマンさん



842 名前:132人目の素数さん mailto:sage [2019/05/06(月) 18:14:41.62 ID:KB/kI55Y.net]
>>798
おみそれしました。
評価の仕方が素晴らしいです。
簡潔な解答にいつも感服いたしております。

843 名前:132人目の素数さん [2019/05/06(月) 21:16:46.66 ID:Z579HYT5.net]
R^n→Rの関数x→||x||が次の1,2,3を満たすときノルムという。

1 ||ax||=|a|||x||(a∈R)

2 ||x+y||≦||x||+||y||

3 ||x||≧0で等号はx=0のみ

R^nの任意のノルム||x||に対し定数a>0,b>0が存在して、任意の
x∈R^nに対しa|x|≦||x||≦b|x|となることの証明。
教えてください。

844 名前:132人目の素数さん mailto:sage [2019/05/06(月) 21:43:23.05 ID:ldSyxuL0.net]
>>805
f(x)=||x||/|x| を球面{x | |x|=1} 上の関数として最小値をa、最大値をbにすれば良い。

845 名前:132人目の素数さん [2019/05/06(月) 23:09:13.13 ID:P7Drypyn.net]
数学の洋書読みたいのですが何かアドバイスとかコツがあったら教えてください ちなみに高校英語も完璧には程遠いです 高校レベルは完璧にしないときついでしょうか…?
Number Theory for Beginners という本を読もうと思っています

846 名前:132人目の素数さん mailto:sage [2019/05/06(月) 23:59:42.19 ID:fTK4RMPl.net]
>>807
そんなにいらない
だいたいの数学書は関係代名詞が分かる程度の英語力があれば問題なく読めるはず
知らない単語は調べりゃいいし

847 名前:132人目の素数さん mailto:sage [2019/05/07(火) 00:42:29.45 ID:2nSi0ExR.net]
>>807
そもそも数学の洋書は一番簡単。
全部恒久の真実だから現在形。
最悪訳せなくても前後の話の流れから意味がわかる時も他の文章より高い。
英語できない理系のやついたら英語の数学のテキスト読ませるのが一番だと思ったりする。

848 名前:132人目の素数さん mailto:sage [2019/05/07(火) 01:18:03.87 ID:+2g4Ocak.net]
数学の英語を読むためには
・文献のレベルに合った数学的な予備知識
・let X be Y 「XをYとする」
・for any X 「任意のXに対して」
・……, where X is Y 「……。ここで、XはYである」
・X denoted by Y 「XをYと書く(XはYと表される)」
・X, that is, Y 「X

849 名前:、すなわちY」
くらい分かってれば十分(予め知らなくても文脈から分かるという意味で必ずしも必要条件ではない)
[]
[ここ壊れてます]

850 名前:132人目の素数さん [2019/05/07(火) 02:14:43.29 ID:k/+AhcPx.net]
https://i.imgur.com/IdLnpEP.jpg
https://i.imgur.com/LJOehcq.jpg

どなたかこの2問お願いします!
7日までに提出しないといけない課題なんです!

851 名前:132人目の素数さん [2019/05/07(火) 03:05:51.19 ID:dWdsWbPD.net]
x^6 - 9 x^4 - 4 x^3 + 27 x^2 - 36 x - 23 = 0 を

代数的に解いてください。

結果は根号で書けるらしいです。

これ以上、チルンハウス変換はできますか?



852 名前:132人目の素数さん mailto:sage [2019/05/07(火) 04:59:56.06 ID:6vB8pMwG.net]
>>812
実根は 2^(1/3)±3^(1/2)

853 名前:132人目の素数さん mailto:sage [2019/05/07(火) 05:16:21.05 ID:iCV/U4pw.net]
x^6 - 9x^4 - 4x^3 + 27x^2 - 36x - 23
= (x^2 -3)^3 - 4(x^3 -9x) + 4
= {(x+√3)(x-√3)}^3 - 2(x+√3)^3 - 2(x-√3)^3 + 4
= {(x+√3)^3 -2} {(x-√3)^3 -2},
より
 x = ±√3 + 2^(1/3), ±√3 + 2^(1/3)ω, ±√3 + 2^(1/3)ω~,
ここに
 ω = (1+i√3)/2, ω~ = (1-i√3)/2,

854 名前:132人目の素数さん mailto:sage [2019/05/07(火) 05:18:55.01 ID:iCV/U4pw.net]
>>814 (訂正)
ここに
 ω = (−1+i√3)/2, ω~ = (−1-i√3)/2,

855 名前:132人目の素数さん [2019/05/07(火) 05:34:31.65 ID:wLdJYbiD.net]
>>808
>>809
スレ違いなのに丁寧に答えてくれてありがとうございます 自信が湧いてきました

856 名前:132人目の素数さん [2019/05/07(火) 10:41:38.47 ID:dWdsWbPD.net]
>>813,>>814

わぁ、ありがとうございました。感動しました。
見たことのない因数分解方法ですね!

実根が分かっても因数分解の方法は思いつきませんでした。

857 名前:132人目の素数さん mailto:sage [2019/05/07(火) 12:06:38.25 ID:Vk9rHNpL.net]
縦4マス、横5マスの20マスのうちランダムに選ばれた
3マスにそれぞれ宝が眠っている
AFKPBG…の順で縦に宝を探していく方法をとるU君と、
ABCDEFGH…の順で横に宝を探していく方法をとるV君が、
同時に地点Aから探索を開始した
どっちの方が有利?

A.B.C.D.E
F.G.H. I..J
K.L.M.N.O
P.Q.R.S.T

858 名前:132人目の素数さん mailto:sage [2019/05/07(火) 21:55:48.14 ID:ZHJTc7S8.net]
長径が2、短径が√3の楕円Cがある。
長軸の上に点P、短軸の上に点Qを、OP=OQ=1となるようにとる。
ただしOは楕円の中心である。

(1)直線PQを折り目として楕円Cを折り曲げてできる図形をDとする。このとき、CとDの重なりの部分Eの面積Sを求めよ。

(2)楕円Cの周と、図形Dの周で直線PQに含まれない部分との交点をRとする。直線ORにより、Eは2つの部分に分割され、その面積比はX:Yとなる。
XとYを求めよ。
ただしX<Yとする。

859 名前:132人目の素数さん mailto:sage [2019/05/07(火) 22:33:35.79 ID:ikTJ4yv/.net]
一辺の長さが1の正三角形△ABCの辺AB上に点Pを、BC上に点Qを、

「PQ=1/2、かつ、点Aと直線PQの距離が(√3)/6以上」となるようにとる。

この条件下でP,Qを動かすとき、線分PQが通過できる領域をDとする。

△ABCの内接円の周のうち、Dに含まれる部分の長さをLとする。
Lと0.4の大小を比較せよ。

860 名前:132人目の素数さん mailto:sage [2019/05/08(水) 01:31:22.83 ID:7c9LCr+z.net]
tan1°は無理数であることを証明せよ

861 名前:132人目の素数さん [2019/05/08(水) 01:39:59.82 ID:ADLYGCu3.net]
>>623「集合で表せない!だから欠陥!」って理屈が意味不明

同値律が成立しないことが物理世界で起きているということは数学にとって問題だが

A=Bの場合
AとBは同一なら1個ということで
同じものを指している

物理現象には
上記の同値律が成立しない場合はあることになる

これのどこが問題かというと
同じ空間に同値律が成立する場合と成立しない場合があるということで
これは同値律が存在の性質に依存する物理的性質ということで
抽象化が出来ないという事だ



862 名前:132人目の素数さん [2019/05/08(水) 01:49:50.40 ID:ADLYGCu3.net]
>>623
>だから、集合や位相空間の代替品なんて幾らでもあるじゃん
>「集合で表せない!だから欠陥!」って理屈が意味不明

現実の物理空間上では
同値律が成立する物と
同値律が成立しない物がある

1つの空間上で
同値律が成立する場合と

863 名前:
同値律が成立しない場合ああるということは
抽象化ができないということだ

ようするの同値律というのは
物の性質に依存する物理的性質ということになる

コップやリンゴは同値律が成立するが
電子は同値律が成立しないので
コップをリンゴにかえても同値律は普遍だが
コップを電子に代えると同値律は成立しないということになる

数学は物の性質に依存しない抽象的概念が対象だが
同値律が物の性質に依存する物理的性質になると
数学にとっては問題なのだ
[]
[ここ壊れてます]

864 名前:132人目の素数さん [2019/05/08(水) 02:18:55.34 ID:ADLYGCu3.net]
>>623
>非可換時空(幾何)について本当に知識があるなら

クリフォード代数についての知識が数学系の人間のようにあるわけでないし
単に物理では電子のスピンを表現するに使用してるといっているだけ

分野としてはスピン幾何で
ここでクリフォード代数を利用して電子の±1/2スピンを表現する

ようするの電子の公転と自転の関係を
クリフォード代数で表現するということで
公転で一周すると連動して±1/2の自転が起こる

これはクリフォード代数空間の
ベクトル空間上で電子の公転と表現して
バイベクトル空間上で電子の自転を表現して
という感じになっている

単にクリフフォード代数空間上で
公転とそれに連動する自転(スピン±1/2)が表現できたというこただけのことで
それが現実の時空上の事とは思えないが

電磁気で使う場合は
クリフォード代数の微分形式というものになる

クリフォード代数の
ベクトル場やバイベクトル場の基底の微分形式で
電磁場の回転(rot)や発散(div)を表現してる

865 名前:132人目の素数さん [2019/05/08(水) 02:38:11.11 ID:ADLYGCu3.net]
>>623専門的な知識が無くても理解できるキャッチーな表現だけ拾って勝手に解釈してるようにしか見えない

クリフォード代数が物理でどのように利用されてるか述べてるだけのことだが

物理的にみて興味深いのが
非可換代数が観測者の概念が入ってる印象をうけることだ

通常は数学には観測者という概念はない

例えば面の場合は
裏から見るとか表から見るとかの観測者の立場が無いので
裏も表もない

非可換代数の面はなにか観測者の導入で
面を裏から見た場合と表からみた場合の印象を持ってしまう

物理の場合は常に観測者がいるので
クリフォード代数空間で有る種の物理現象をうまく表現できるのかもしれない

物理では自己を観測する自己観測があり
これは自己相互作用と呼ばれる

これは数学では禁止事項なので
自己相互作用は数学では表現できない

866 名前:132人目の素数さん [2019/05/08(水) 02:49:26.99 ID:ADLYGCu3.net]
>>634無意味な疑問を持つこと自体がバカってことよ

ワイルも同種の疑問を持っていた

867 名前:132人目の素数さん [2019/05/08(水) 02:56:05.22 ID:ADLYGCu3.net]
>>596
>問題
>一つの世界に二つの確率統計が存在する
>この奇妙さは多くの数学者を悩ましている
>なぜ数学者にとって一つの世界で二つの確率統計が共存してる事が問題なのか?

super理論は一つの世界に二つの確率統計が存在することを説明しようとこころみた論理だが
浸透してないのは不自然さがあり共感を呼ばない事だとされてる

868 名前:132人目の素数さん [2019/05/08(水) 03:52:14.05 ID:ADLYGCu3.net]
>>634無意味な疑問を持つこと自体がバカってことよ

上記の疑問は雑誌の数学セミナーで取り上げられたが
別にバカ扱いはされてなかった

869 名前:132人目の素数さん mailto:sage [2019/05/08(水) 05:27:54.23 ID:tySFkmWC.net]
急にずいぶん古いレスに反応してどうしたの?。

870 名前:イナ mailto:sage [2019/05/08(水) 10:36:16.31 ID:9F4D6ahB.net]
>>785
>>819
S=θ/√3-4/7
sinθ=(4√3)/7
=0.989743319……

871 名前:132人目の素数さん mailto:sage [2019/05/08(水) 10:37:09.99 ID:1eQEKnA3.net]
(8,866,128,975,287,528)^3+(-8,778,405,442,862,239)^3+(-2,736,111,468,807,040)^3=33

ですか?



872 名前:イナ mailto:sage [2019/05/08(水) 12:37:59.57 ID:9F4D6ahB.net]
>>819>>830(1)S≒0.2413

873 名前:132人目の素数さん mailto:sage [2019/05/08(水) 12:47:16.99 ID:M8ZfoFk1.net]
>>829
言い返したくて必死に啓蒙本を読み漁ってたんだろうね
読んでみたけど元のレスで指摘されてることを全く理解せず的外れなこと書いてるし相手にするだけ無駄

874 名前:イナ mailto:sage [2019/05/08(水) 13:25:39.90 ID:9F4D6ahB.net]
>>819>>832
(2)題意より交点Rをどこと解釈するかで違うが、
X=0,Y=S
と受けとめました。

875 名前:132人目の素数さん mailto:sage [2019/05/08(水) 13:56:55.14 ID:eWKRMaW9.net]
>>833
ほんとだー
わざわざ遡って見ちゃったよ

876 名前:132人目の素数さん [2019/05/08(水) 14:08:58.28 ID:ADLYGCu3.net]
>>833啓蒙本

クリフォード代数の啓蒙書は存在しないし

っていうか当時は本自体が無かった

877 名前:132人目の素数さん [2019/05/08(水) 14:27:18.21 ID:ADLYGCu3.net]
問1
個数と回数は同じ数の概念か?

問2
自然数は個数の概念か?
自然数は回数の概念か?
自然数は個数と回数共通の概念か?

878 名前:132人目の素数さん [2019/05/08(水) 14:33:14.66 ID:ADLYGCu3.net]
>>833言い返したくて必死に啓蒙本を読み漁ってたんだろうね

というか昨日久しぶりにこのトピをのぞいた

俺が苦クリフォード代数を勉強したのはいまから14年程度前で
当時このことはほとんど忘れてしまった

ということで当時の記憶で思いだせる範囲でレスしてるだのことで
特に何か資料を調べる努力はしていない

その理由は
非可換代数では時空は表現できないし
クリフォード代数を覚えとく必要性がなくなってしまった

879 名前:イナ mailto:sage [2019/05/08(水) 14:49:13.61 ID:9F4D6ahB.net]
>>820>>834
△ABCの内接円の円周は、
2π/2√3=π/√3
0.4<π/4√3=0.4……<切りとられる円弧

880 名前:132人目の素数さん mailto:sage [2019/05/08(水) 15:58:59.84 ID:1eQEKnA3.net]
a^3+b^3+c^3=33 を満たす整数a,b,cを求めよ

881 名前:132人目の素数さん mailto:sage [2019/05/08(水) 17:50:23.50 ID:OCAIC5ff.net]
a = 8866128975287528,
b = -8778405442862239,
c = -2736111468807040,

>>831 にある。



882 名前:132人目の素数さん mailto:sage [2019/05/08(水) 18:10:27.25 ID:clE3dj5Q.net]
>>840
これ有名な問題なんですか?

883 名前:132人目の素数さん mailto:sage [2019/05/08(水) 18:40:09.85 ID:bh6tN/bi.net]
クリフォード代数なんて19世紀にはもう明確な形で分類とかもされてたような骨とう品なのに
何が当時は本なんて無かっただ、笑わせるなよwww

884 名前:132人目の素数さん mailto:sage [2019/05/08(水) 18:50:35.37 ID:clE3dj5Q.net]
AB=a,AD=b(a≤b)
の平行四辺形ABCDがある。
ここで∠BAD=θ°とし、以下ではθは0<θ≤90の範囲を変化するものとする。

3点A,B,Cを通る円Sと、3点A,B,Dを通る円Tの交点のうち、BでないものをPとする。
線分長の和AP+BP+CP+DPを最大とするようにθを定めたい。sinθをa,bで表せ。

885 名前:132人目の素数さん mailto:sage [2019/05/08(水) 18:59:03.91 ID:orJQ9zLM.net]
A=P

886 名前:132人目の素数さん [2019/05/08(水) 19:08:53.00 ID:boKroMnb.net]
y=(log^2)^2の微分をどなたか教えてください

887 名前:132人目の素数さん [2019/05/08(水) 19:11:55.33 ID:dR9XctiI.net]
あっちと問題が違うぞ

888 名前:132人目の素数さん [2019/05/08(水) 19:13:55.58 ID:boKroMnb.net]
>>847
すみません書き間違えました
y=(logx^2)^2の微分を教えてください

889 名前:132人目の素数さん mailto:sage [2019/05/08(水) 19:50:26.82 ID:bh6tN/bi.net]
>>848
y=u^2, u=log(v), v=x^2
dy/dx=dy/du*du/dv*dv/dx

890 名前:イナ mailto:sage [2019/05/08(水) 21:37:35.77 ID:9F4D6ahB.net]
>>819>>839
折りかえして重なるのは葉っぱじゃないよね。葉っぱじゃないよ、カエルかな?
カエルじゃないよ、土人だよ。葉っぱの半分でいいはず。楕円Cのふつうはちっさいほう折りかえすと思うんだけど、仮におっきいほう折りかえしても、重なるのは葉っぱじゃないよ、葉っぱの半分だよだよね?
楕円めんどいんで円

891 名前:ナやって横拡大かと思ったんだけど、逆に縦圧縮だね。

半径1の円で求めて2/√3倍する。
x^2+y^2=1とy=-(2/√3)(x-1)の交点はP(1,0)とQ(0,2/√3)
2S/√3=π/4-(1/2)(1-1/7)(4√3/7)-∫[0→1/7]√(1-x^2)dx
2S/√3=π/4-12√3/49-∫[0→1/7]√(1-x^2)dx
S=π√3/8-18/49-(√3/2)∫[0→1/7]√(1-x^2)dx
[]
[ここ壊れてます]



892 名前:132人目の素数さん [2019/05/08(水) 22:10:11.51 ID:exw/0Sfr.net]
>>843
>クリフォード代数なんて19世紀にはもう明確な形で分類とかもされてたような骨とう品なのに
>何が当時は本なんて無かっただ、笑わせるなよ

検索した結果
 クリフォード代数は 20 世紀末に米国の物理学者ヘ
 ステネスがとりあげるまで,一部の数学者を除いてほ
 とんど忘れられていた


物理で注目されたけど
数学としては忘れされれたので本が無かった
本がなかった

893 名前:132人目の素数さん mailto:sage [2019/05/08(水) 22:30:50.99 ID:clE3dj5Q.net]
△ABCは、重心、外心、フェルマー点が同一直線上にあるような三角形とする。ただし点が重なる場合も同一直線上とみなす。

(1)三角形についての以下の命題P,Q,Rは同値であることを示せ。
P『重心、外心、フェルマー点が同一直線上にある』
Q『外心、垂心、フェルマー点が同一直線上にある』
R『垂心、重心、フェルマー点が同一直線上にある』

(2)△ABCはどのような形状かを述べよ。

894 名前:132人目の素数さん mailto:sage [2019/05/08(水) 23:18:18.08 ID:tySFkmWC.net]
微分形式のスレ【differential forms】
https://rio2016.5ch.net/test/read.cgi/sci/1301844272/

【幾何代数】geometric algebra について語るスレ [転載禁止]c2ch.net
https://rio2016.5ch.net/test/read.cgi/math/1420542159/

895 名前:132人目の素数さん mailto:sage [2019/05/08(水) 23:18:41.03 ID:46ZyrkZT.net]


896 名前:132人目の素数さん mailto:sage [2019/05/08(水) 23:20:04.37 ID:tySFkmWC.net]
>>838
>>843
>>851


>>853

スピノールとかディラック作用素とかクリフォード代数超代数フォック代数とかそっちの話できる奴ならいいんだけどねえ

897 名前:132人目の素数さん [2019/05/08(水) 23:38:07.66 ID:oSlKMn89.net]
a_0, a_1, a_2, … を実数列とする。

D^i f = a_i となる関数 f が存在することを証明せよ。

898 名前:132人目の素数さん mailto:sage [2019/05/09(木) 00:13:49.20 ID:QL7dqFVp.net]
イプシロンデルタ論法で
@lim(1/√n)[n→∞]=0
Alim(1/n^2)[n→∞]=0
を示せ

イプシロンデルタ論法で躓いています
よろしくお願いします

899 名前:132人目の素数さん mailto:sage [2019/05/09(木) 00:19:15.35 ID:TtmDNSyQ.net]
>>855
数学科?就職どこ行く?

900 名前:132人目の素数さん mailto:sage [2019/05/09(木) 00:29:48.91 ID:yjLxsWta.net]
1/√n→0については、n≧Nのとき1/√n≦1/√Nで、これが<εとなるためにはNをどう取れば良いか?ということです
もちろん1/√N<εとなるNを取ればいいですが、これを変形してN>1/ε^2となります
つまり、任意のε>0に対してN>1/ε^2なる自然数Nを取れば(※)1/√n→0の定義を満たします
Aも同様です

※例えば[x]をガウス記号としてN=[1/ε^2]+1と置けばいいですが、Nを具体的に与える必要はない(とにかく不等式を満たしさえすれば良い)のでN=f(ε)の形で書く必要はないです

901 名前:132人目の素数さん mailto:sage [2019/05/09(木) 00:36:09.47 ID:QL7dqFVp.net]
>>859
頑張れば理解できそうなのでやってみます
ありがとうございました



902 名前:132人目の素数さん [2019/05/09(木) 00:39:47.74 ID:RiUaqu8C.net]
Nを雑というか大胆に取るのがコツ

903 名前:132人目の素数さん mailto:sage [2019/05/09(木) 05:38:01.51 ID:7Q6cd3gq.net]
>>856

級数 Σ[i=0,∞] (a_i/i!)x^i
が正の収束半径をもてば、f(x) に収束する。

904 名前:132人目の素数さん mailto:sage [2019/05/09(木) 06:18:52.08 ID:Axwv6BTv.net]
有限個の閉集合の和集合も閉であることを数列の閉集合の定義を使って証明するにはどのように書けばいいのでしょうか

905 名前:132人目の素数さん mailto:sage [2019/05/09(木) 06:33:41.00 ID:Axwv6BTv.net]
あ、解

906 名前:決しました []
[ここ壊れてます]

907 名前:132人目の素数さん mailto:sage [2019/05/09(木) 08:34:41.84 ID:yjLxsWta.net]
>>859
寝ぼけて変なこと書いてた……
※の部分は無視してください

908 名前:132人目の素数さん mailto:sage [2019/05/09(木) 08:37:36.23 ID:yjLxsWta.net]
あ、いやいいのか
+1が見えてなかった

909 名前:132人目の素数さん [2019/05/09(木) 10:07:34.15 ID:bm25PXAL.net]
>>862

a_0, a_1, a_2, … を実数列とする。

D^i f = a_i となる関数 f ∈ C^∞(R) が存在することを証明せよ。

910 名前:132人目の素数さん mailto:sage [2019/05/09(木) 10:51:11.18 ID:+DLc12jh.net]
そもそもD^i fが定数なら次は0やろ?

911 名前:132人目の素数さん [2019/05/09(木) 10:55:36.37 ID:bm25PXAL.net]
訂正します:

a_0, a_1, a_2, … を実数列とする。

D^i f(0) = a_i となる関数 f ∈ C^∞(R) が存在することを証明せよ。



912 名前:132人目の素数さん mailto:sage [2019/05/09(木) 13:54:30.83 ID:RcCYGe+2.net]
数学セミナーかなんかで見た
覚えてるから書けるけど遠慮しとく

913 名前:132人目の素数さん mailto:sage [2019/05/09(木) 14:52:53.36 ID:TtmDNSyQ.net]
数学科の人は就職どこ行く?






[ 続きを読む ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<381KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef