Earlier (1948/9) the implications for fiber bundles were extracted in a form formally identical to that of the Serre spectral sequence, which makes no use of sheaves. This treatment, however, applied to Alexander?Spanier cohomology with compact supports, as applied to proper maps of locally compact Hausdorff spaces, as the derivation of the spectral sequence required a fine sheaf of real differential graded algebras on the total space, which was obtained by pulling back the de Rham complex along an embedding into a sphere. Serre, who needed a spectral sequence in homology that applied to path space fibrations, whose total spaces are almost never locally compact, thus was unable to use the original Leray spectral sequence and so derived a related spectral sequence whose cohomological variant agrees, for a compact fiber bundle on a well-behaved space with the sequence above.
In the formulation achieved by Alexander Grothendieck by about 1957, the Leray spectral sequence is the Grothendieck spectral sequence for the composi