面白い問題おしえて〜 ..
511:132人目の素数さん
18/11/29 18:58:12.47 +9fHdpLo.net
不思議だなこれ
寝る。
次の日n頭中の誰もトカゲになってないなら、
どうn-1頭をとってもその中に少なくとも1頭緑目がいることになる。
適当にn-1頭が集まって「この中に少なくとも1頭緑目がいる」と宣言する。しなくても皆気付いてるけど。
寝る。
次の日集まったn-1頭中の誰もトカゲになってないなら、
その中からどうn-2頭をとってもうち少なくとも1頭は緑目がいることになる。
適当にn-2頭が集まって「この中に少なくとも1頭緑目がいる」と宣言する。しなくても皆気付いてるけど。
以下略
一方で「島には少なくとも1頭緑目がいる」という旅人の言葉は
全てのドラゴンにとって既知の事実だし、
それが全てのドラゴンにとって既知の事実だということも皆が知っているし、
それが全てのドラゴンにとって既知の事実だということも皆が知っているということも皆が知っている。
旅人の言葉は何の情報を与えてドラゴンの推論エンジンを始動したのか?
512:132人目の素数さん
18/11/29 21:03:17.45 HF9YHqBY.net
>>471の方針のもとで剰余項ありのケースを考えたら、
C_0^∞関数で近似して普通に剰余項が出たっぽい。
f:[0,1]→Rは2階微分可能で、f '' ∈L^2 が成り立つとする。
このとき、α=1/3に対して
Σ(k≦x^{1/2})f({x/k})=x^{1/2}∫(0,1)f(t)dt+O(x^{(2/5)α+(3/10)})
が成り立つ。
残念ながら、O(x^{5/12}log(x))よりは精度が悪いw
513:132人目の素数さん
18/11/30 00:36:11.15 rQpMmAJV.net
>>472
類題をどっかで見たようなと思ったけど、これと同じかな?
こっちのほうがイメージしやすそう
100組の夫婦が暮らす村がある。
100人の夫は全員他の家の妻と不倫をしている。
この村のルールでは、妻が夫の不倫を知ったらその夜に夫を殺さなければならない。
妻は他の家の夫が不倫をしていることを必ず見抜くことができるが、
自分の夫の不倫には絶対に気がつかない。
妻たちは全員論理的な思考ができて、かつ他の妻に夫が不倫をしていることを決して言わない。
村を訪れた旅人が「少なくとも一人の夫が不倫をしている」と言った。
その後どうなるか。
514:132人目の素数さん
18/11/30 03:38:09.32 6JPMu1Zv.net
見直したけど大丈夫っぽいので、>>471の詳細を書いてみます。
剰余項つきの>>474はまた今度。
f:[0,1]→Rに対して
S_u(f)=limsup(x→∞)x^{−1/2}Σ(k≦x^{1/2})f({x/k})
S_d(f)=liminf(x→∞)x^{−1/2}Σ(k≦x^{1/2})f({x/k})
と置く。lim が実数として存在するときには
S(f)=lim(x→∞)x^{−1/2}Σ(k≦x^{1/2})f({x/k})
とも置く。S(f)が存在することと、
S_u(f)=S_d(f)∈R が成り立つことは同値であり、
そのときS(f)=S_u(f)=S_d(f)∈R
515:が成り立つ。
516:132人目の素数さん
18/11/30 03:41:32.79 6JPMu1Zv.net
fがリーマン可積分なら、S(f)が存在してS(f)=∫(0,1)f(t)dtが成り立つことを示したい。
Weyl's criterion の真似をする(f(x)が特殊な形から出発して一般化していく)。
f(x)=sin(2πkx) (k∈Z) のときは、もしk≠0なら、
>>413により S(f)=0=∫(0,1) f(t)dt である。
また、k=0のときは S(f)=0=∫(0,1) f(t)dt である。よって、この場合は成立。
f(x)=cos(2πkx) (k∈Z) のときは、もしk≠0なら、>>413と同じように計算して、
S(f)=0=∫(0,1) f(t)dt である。また、k=0のときは
S(f)=1=∫(0,1) f(t)dt である。よって、この場合も成立。
S(f)の線形性により、有限個の sin(2πkx), cos(2πkx) (k∈Z) の
R係数の線型結合で表されるg(x)に対しても、S(g)が存在してS(g)=∫(0,1)g(t)dtとなる。
517:132人目の素数さん
18/11/30 03:44:54.09 6JPMu1Zv.net
次に、f:[0,1]→R が連続で f(0)=f(1) を満たすときを考える。
この場合、フーリエ展開の理論から、任意のε>0に対して、有限個の
sin(2πkx), cos(2πkx) (k∈Z) のR係数の線型結合で表されるg(x)であって
sup(x∈[0,1])|f(x)−g(x)|<ε
を満たすものが取れる。S(g)=∫(0,1)g(t)dt により、
S_u(g)=S_d(g)=∫(0,1)g(t)dt なので、g−ε≦f≦g+ε (各点)
と合わせて
S_u(f)≦S_u(g+ε)=S_u(g)+ε=∫(0,1) g(t)dt+ε
S_d(f)≧S_d(g−ε)=S_d(g)−ε=∫(0,1) g(t)dt−ε
S_u(f)≧S_d(f)
となる。また、|∫(0,1)g(t)dt−∫(0,1)f(t)dt|≦εである。よって、
∫(0,1)f(t)dt−2ε≦S_d(f)≦S_u(f)≦∫(0,1)f(t)dt+2ε となる。
ε>0は任意だったから、この場合も成立。
518:132人目の素数さん
18/11/30 03:48:44.97 6JPMu1Zv.net
次に、A⊂[0,1] に対して、1_A:[0,1]→R を 1_A(x)=1 (x∈A), 0 (x∈[0,1]−A) と定義する。
ここでは、I⊂[0,1] は開区間または閉区間または半開区間とする。f=1_I のときを考える。
任意のε>0に対して、折れ線で構成される連続関数 f_1,f_2:[0,1]→R であって
f_k(0)=f_k(1) (k=1,2),
f_1≦f≦f_2 (各点の意味),
∫(0,1)(f_2(t)−f_1(t))dt<ε
を満たすものが簡単に構成できる。S_u(f_k)=S_d(f_k)=∫(0,1)f_k(t)dt なので、
S_u(f)≦S_u(f_2)=∫(0,1)f_2(t)dt≦∫(0,1)f_1(t)dt+ε≦∫(0,1)f(t)dt+ε
S_d(f)≧S_d(f_1)=∫(0,1)f_1(t)dt≧−ε+∫(0,1)f_2(t)dt≧−ε+∫(0,1)f(t)dt
S_u(f)≧S_d(f)
により、−ε+∫(0,1)f(t)dt≦S_d(f)≦S_u(f)≦∫(0,1)f(t)dt+ε となる。
ε>0は任意だったから、この場合も成立。
519:132人目の素数さん
18/11/30 03:53:36.23 6JPMu1Zv.net
よって、有限個の 1_I (I⊂[0,1]は開区間または閉区間または半開区間)の
R係数の線型結合で表されるg(x)に対しても、S(g)が存在してS(g)=∫(0,1)g(t)dtとなる。
すなわち、任意の階段関数 g:[0,1]→R に対して、S(g)が存在してS(g)=∫(0,1)g(t)dtとなる。
最後に、f:[0,1]→R はリーマン可積分とする。リーマン積分の性質により、
任意のε>0に対して、ある階段関数 f_1,f_2:[0,1]→R が存在して、
f_1≦f≦f_2 (各点の意味),
∫(0,1)(f_2(t)−f_1(t))dt<ε
が成り立つ。よって、>>479と同じ計算で S(f)=∫(0,1)f(t)dt となる。
特にf(x)=xとして、lim(x→∞)x^{−1/2}Σ(k≦x^{1/2}){x/k}=1/2 が成り立つ。□
520:132人目の素数さん
18/11/30 15:38:06.60 rQpMmAJV.net
>>473
解説を読んでもすぐにはピンとこないよね
>99日後に分かる
>「少なくとも99頭のドラゴンが緑の目をしていること」はみんな知っているよ
>これが「旅人がドラゴンに与えた情報」です
521:132人目の素数さん
18/11/30 15:56:26.16 FBGG17Gf.net
>>475
今までに
他の家で誰も殺されていないことを全ての妻が知っている、のが前提だよね?
522:132人目の素数さん
18/11/30 17:09:43.19 DJTATwgI.net
>>480
なるほど、求める性質が成り立ってくれるとわかる関数のクラスをどんどん"扱いやすいもの"にしていくという方法か
そうすると、2以上のαに対して S'(f)=lim_(x→∞) x^(1/α) Σ_(k=1,[x^(1/α)]) f(k) と定義した時に
同じ議論が成り立つかどうかも、最初の sinkx, coskx についての箇所さえチェックすればいいことになるんかな
まあ、これを考えるとなると、一般の多項式についてガウス和チックなこと考えなきゃいけなくて
かなり面倒になることが予想される…w ここも興味ある有志にお任せするとしようか
523:132人目の素数さん
18/11/30 17:16:10.09 REFDuxRq.net
緑目ドラゴン3頭が島で暮らしている。
旅人が「少なくとも1頭は緑目」と言う。
ドラゴンAは考える
「我以下の2頭は緑目」
「論理的に考えて3頭中どの2頭をとっても少なくとも1頭緑目がいる」
「我とドラゴンBのうち少なくとも1頭は緑目」
「見てわかるようにドラゴンBは緑目」
「だがドラゴンBから見ると『論理的に考えて3頭中どの2頭をとっても少なくとも1頭緑目がいる』は成り立たない」
「我が赤目の場合、ドラゴンBからは緑目は1頭しか見えていないのだからな」
「とすれば論理的に考えて」
「皆が緑目であるか、」
「自分だけが赤目であるか、」
「のいずれかであるな」
おしまい。
524:132人目の素数さん
18/11/30 17:28:59.35 REFDuxRq.net
>>484
>「我以下の2頭は緑目」
我以外、の書き間違えでした。
自分の目の色はわからないので自分と他人とでは情報に対称性がないわけです。
よって「自分から見るとAが帰結されるから他人もAと帰結するはず」とは言えない。
「少なくとも1頭緑目がいる」という既知の情報からは
「自分だけが赤目か皆が緑目のいずれかである」
という既知の事実以上の推論は不可能でした。
525:132人目の素数さん
18/11/30 19:07:58.32 rQpMmAJV.net
@ 既知の情報だから何も起こらない説
A 外部発言がなくても全員が変身する説
信じるか信じないかは、あなた次第
526:132人目の素数さん
18/11/30 19:31:32.14 REFDuxRq.net
>>473
>適当にn-1頭が集まって「この中に少なくとも1頭緑目がいる」と宣言する。しなくても皆気付いてるけど。
この「皆気付いてるけど」が少なくとも n=3 のときは成り立たないんだよね
527:132人目の素数さん
18/11/30 23:57:51.84 FDb9lbGr.net
3匹の場合でこうかな
1日目のA:
1)我(A)が赤目だと仮定しよう。そのとき、Bは赤目(A)と緑目(C)が見えている。
Bは「a)我(B)が赤目だと仮定しよう。そのとき、Cは赤目(A,B)だけが見えている。
ならば、Cは『緑目が少なくとも一頭いるのだから、我(C)が緑目だ』と考える。
b)我(B)が緑目だと仮定しよう。そのとき、Cは赤目(A)と緑目(B)が見えている。
ならば、Cは『緑目が少なくとも一頭いることからは、我(C)が緑目だとはいえない』と考える。
a)b)から、明日になってCがトカゲになっていたら我(B)は赤目、ならなかったら我(B)は緑目だ」と考える。
2)我(A)が緑目だと仮定しよう。そのとき、Bは緑目(A,C)が見えている。
Bは「緑目が少なくとも一頭いることからは、我(B)が緑目だとはいえない」と考える。
2日目のA:
Cはトカゲにならなかった。
1)我(A)が赤目だと仮定しよう。Bは「我(B)は緑目だ」と考える。
2)我(A)が緑目だと仮定しよう。Bは「我(B)は緑目だとはいえない」と考える。
1)2)から、明日になってBがトカゲになっていたら我(A)は赤目、ならなかったら我(A)は緑目だ。
3日目のA:
Bはトカゲにならなかった。
我(A)は緑目だ。
528:132人目の素数さん
18/12/01 00:19:18.76 d/iEZ9M6.net
>>488
対称性から2日目に結論が出るから、3日目には全員トカゲになっているな
529:132人目の素数さん
18/12/01 00:25:39.26 subMGBQf.net
>>488
そうするとこの場合はどうなるんだろう。
島に3頭の緑目ドラゴンがいた。
ドラゴンAはある日ふと思った。
「この島には少なくとも1頭の緑目がいる」
530:132人目の素数さん
18/12/01 00:26:50.87 subMGBQf.net
もちろんBCも(目で見て)それ(少なくとも1頭緑目がいることを)を知っている、とAは考えている。
531:132人目の素数さん
18/12/01 00:37:15.89 UzK/K8Af.net
>>490
その場合はAの想像の中のBの想像の中のCは「緑目が少なくとも一頭いる」ことは知らない。
ABCが「緑目が少なくとも一頭いる」という知識を共有してないといけない。
532:132人目の素数さん
18/12/01 00:50:34.34 subMGBQf.net
>>492
1行目はわかるんだけれども、2行目、
旅人なしでも
少なくとも1頭はいるという知識は共有しているし
共有しているという知識も共有していますよね。
533:132人目の素数さん
18/12/01 04:25:09.77 CULPj2qo.net
「あなた方の少なくとも1匹は緑目」
=「あなた以外のドラゴンがみな緑目でないなら、あなたは緑目」
「俺達の少なくとも1匹は緑目」からは後者の推論が成り立たない
534:132人目の素数さん
18/12/01 05:59:03.59 subMGBQf.net
「俺たちの少なくとも1頭は緑目」
=「俺以外の2頭が赤目なら俺は緑目」
形式的には全く問題なく推論が成り立つ気がするが
535:132人目の素数さん
18/12/01 07:35:05.28 B/IRA2ng.net
>>475
類題として俺はこれを思い出した。
URLリンク(imagizer.imageshack.com)
536:イナ
18/12/01 09:36:39.36 Lf06XF8t.net
>>496
すぐに走りだす奴がいないということは三人の帽子は順不同の白白赤か白白白。
つまり白赤が見えてるか白白が見えてる。白赤が見えてるとき人は一般に自分が赤である確率が1/3だから走るはずだ。が、あとの二人が走らないということは白白が見えてるってこった!―そう思ってみんな走った。
537:132人目の素数さん
18/12/01 10:09:01.06 fEPxSJvL.net
www
538:132人目の素数さん
18/12/01 10:54
539::01.84 ID:wA8sRiTg.net
540:132人目の素数さん
18/12/01 12:39:41.36 CULPj2qo.net
>>495
「俺たちの〜」は、(自分を除いて)少なくとも1頭が緑目、という限定主観情報
「あなた方の〜」は、(自分も含めて)少なくとも1頭が緑目、という客観情報
限定主観情報からは自分が緑目の推論は不可能
541:132人目の素数さん
18/12/01 16:52:23.81 CULPj2qo.net
「共有知識」で検索してたら関連パズルを発見
A,B,Cの3人が次のようなゲームをしました.
まずゲームマスターが3つの帽子に30, 2018, 2048と書き込み,この順にA,B,Cにかぶせます.
ゲームマスターは全員の前でこう告げます:
「帽子には全て正の整数が書かれています.それから,帽子に書かれた数のうち最大のものは,残りの2つの数の和になっています.」
3人は自分以外の人の帽子は見えますが,自分の帽子は見えません.
次にゲームマスターはA,B,Cの順に「自分の帽子に書かれた数がわかりますか?」と尋ねます.
全員が続けて「わからない」と答えたら,再びA,B,Cの順に同じことを尋ねます.
最初に自分の帽子に書かれた数字がわかるのは3人のうち誰で,それはその人への何回目の質問のときでしょうか.
ただし参加者全員は十分に明晰で,嘘をつくこともないとし,発言は全員に聞こえるものとします.
542:
18/12/01 18:51:55.48 Lf06XF8t.net
師走、師走、師走!
師が走ると書いて師走!!
笑わば笑え、師走の気層のひかりの底を唾しはぎしりゆききする、俺はひとりの修羅なのだ! 前>>497
開運!!
参考文献
『春と修羅』宮沢賢治
543:
18/12/01 19:23:22.88 Lf06XF8t.net
ヾ∩∩〃
((`e`)やぁ
(っц)~きつい戦い
~ιγ) でした。
_υ`υ_ 二人とも走んなかったんで、こいつら白白見てる、俺白だ! 前>>502ピンときました。どのみち同時に走ったところで勝つ確率1/3なんで、それならスタート切って2/3失格じゃないなら一抜けできるなって。
544:132人目の素数さん
18/12/01 19:47:10.44 uyFzn6KH.net
>>501
とりあえず73ターン目のCは正解出来るみたいね。
これ以前に誰かが正解出来る可能性が否定出来てないのでダメだけど。
まず1ターン目誰もわからないので(a,a)の形が見えてる人がいないことが分かる。
次に2ターン目誰もわからないので(a,2a)の形が見えてる人がいないことが分かる。
次に3ターン目誰もわからないので(a,3a), (2a, 3a)の形が見えてる人がいないことが分かる。
……
と続けていくと遅くとも73ターン目のBの終了時点で(15a, 994a)の形が見えてる人がいないとわかり、Cはこの時点で(30,2018,1988) でないとわかるのでこのターンで正解出来る。
これが最初かどうかは不明。
545:132人目の素数さん
18/12/01 20:46:54.61 CULPj2qo.net
(a,a)否定の意味は分かるけど
(a,2a)否定の意味が分からないorz
546:132人目の素数さん
18/12/01 21:12:27.84 uyFzn6KH.net
もし(a,2a)と見えてる人がいたらその人にとって可能性は
(a,a,2a)か(a,2a,3a)しかないけど1ターン目で前者が否定されてるから(a,2a,3a)に確定するはず。
にも関わらず2ターン目で全員解答不能ならそのように見えてる人はいないとわかる。
547:132人目の素数さん
18/12/01 22:26:37.88 oLhduph7.net
ヒカキンの年収が10億超え!?明石家さんま・坂上忍も驚愕の総資産とは??
URLリンク(logtube.jp)
【衝撃】ヒカキンの年収・月収を暴露!広告収入が15億円超え!?
URLリンク(nicotubers.com)
HIKAKIN(ヒカキン)の年収が14億円!?トップYouTuberになるまでの道
548:のりは? https://youtuberhyouron.com/hikakinnensyu/ ヒカキンの月収は1億円!読唇術でダウンタウンなうの坂上忍を検証! https://mitarashi-highland.com/blog/fun/hikakin なぜか観てしまう!!サバイバル系youtuberまとめ http://tokyohitori.hatenablog.com/entry/2016/10/01/102830 あのPewDiePieがついに、初心YouTuber向けに「視聴回数」「チャンネル登録者数」を増やすコツを公開! http://naototube.com/2017/08/14/for-new-youtubers/ 27歳で年収8億円 女性ユーチューバー「リリー・シン」の生き方 https://headlines.yahoo.co.jp/article?a=20170802-00017174-forbes-bus_all 1年で何十億円も稼ぐ高収入ユーチューバー世界ランキングトップ10 https://gigazine.net/news/20151016-highest-paid-youtuber-2015/ おもちゃのレビューで年間12億円! 今、話題のYouTuberは6歳の男の子 https://www.businessinsider.jp/post-108355 彼女はいかにして750万人のファンがいるYouTubeスターとなったのか? https://www.businessinsider.jp/post-242 1億円稼ぐ9歳のYouTuberがすごすぎる……アメリカで話題のEvanTubeHD https://weekly.ascii.jp/elem/000/000/305/305548/ 世界で最も稼ぐユーチューバー、2連覇の首位は年収17億円 https://forbesjapan.com/articles/detail/14474
549:132人目の素数さん
18/12/01 22:47:57.42 CULPj2qo.net
>>506
なるほど
ということは4ターン目終了時は以下が否定か
(a,4a)、(2a,5a)、(3a,4a)、(3a,5a)
まだ (15a,994a) の理屈は分かってないけど
1988=2*2*7*71 は関係あるかもね
550:132人目の素数さん
18/12/01 23:13:44.17 ix7k9ti5.net
昔家庭教師だったけど、数年前に学生に出された問題がわからない。
曰く数学オリンピックに入賞した奴が考えた問題だそうで、それの回答をせがんできたが自分には無理だった
今でも悔しいので、誰か答えがわかったら
多角形の対角線(以下A)をすべて結び、対角線同士の交点をXとする。またXから、他のXもしくは多角形の頂点へと線を結び(以下B)、B同士、またはBとAが交わった点をYとする。
またYから、他のY、もしくはX・多角形の頂点へと線を結び、それらの線同士、またはそれらの線とB、Aが交わった点をZとする。
以下この操作を無限に繰り返すことができない多角形をMとする。
@Mに該当する六角形を1つ図示せよ
AMは七角形以上の多角形には存在しないことを証明せよ
@は分かった
Aは無理だった
551:132人目の素数さん
18/12/01 23:25:49.60 uyFzn6KH.net
>>509
> @Mに該当する六角形を1つ図示せよ
>
> @は分かった
はどんな6角形ですか?
552:132人目の素数さん
18/12/01 23:38:40.23 ix7k9ti5.net
>>510
ヒントでいいなら、まず無限に上の操作を繰り返せない五角形を考えてみたらいいと思う
六角形はその要領で考えたら自然と出来るよ
553:132人目の素数さん
18/12/02 00:10:17.97 qrkUsr2r.net
>>511
いや、問題文の意味がわからない。
>>509の文章からは今まで獲得した点集合から4点ABCDを線分AB、CDを選んでその交点を新たに追加していいように思える。
でもそのルールだとどんな凸5角形からスタートしても無限に交点を生成できる。
554: たとえばABCDEを凸5角形でこの順にならんでるとしてAC、BDの交点をX[1]、X[1]E、ADの交点をY[2]、 以下AC、BY[i-1]の交点をX[i]、AD、X[i]Eの交点をY[i]とえらんでいけば、X[i]はAC上のすべて異なる点になってしまう。 なんかこの作業が禁止される禁止則がないとだめだけど>>509の文章ではそれがなにか伝わってこない。 なので6角形でMに属する図形の例あげてもらえれば伝わってくるのではないかと。
555:132人目の素数さん
18/12/02 01:06:23.43 fdTrITVn.net
>>512
五角形は長方形の対角線の交点に頂点が来るようにしたらいけるよ
それ以上結びようがない
556:132人目の素数さん
18/12/02 01:12:54.18 j7QG7I+o.net
>>513
ああ、5角形って角が180度もありなのね。
やっと意味わかった。
557:132人目の素数さん
18/12/02 01:15:55.59 DwQ9ijI8.net
あ、ちがうな。
>五角形は長方形の対角線の交点に頂点が来るようにしたらいけるよ
これで意味わかった。
558:132人目の素数さん
18/12/02 01:18:27.34 B+C2Ix9O.net
>>513
もう一度確認。
凸でなくてもいい(180°超えるのは可)
だけどピッタリ180°は不可で桶?
でないと△ABCのBC上に4点とればMになっちゃうもんね?
559:132人目の素数さん
18/12/02 01:30:04.51 /eJ4uY04.net
>>513
だめだ。まだ不明点あるや。
凸でなくていいならたとえば六角形ABCDEFで∠Aが180°超える場合、対角線BFは6角形の外にでるけど、たとえばこのBFと直線ACの交点を追加するのはありなん?
それともあくまで “辺”、”対角線” はその延長を含まず追加される点は常にもとのPolygonの中に限定されるの?
560:132人目の素数さん
18/12/02 01:46:22.52 fdTrITVn.net
>>516
それでいい
>>517
あり
561:132人目の素数さん
18/12/02 01:49:02.50 Dx2sd3hu.net
>>518
(1)の6角形の6点は全てことならないとだめなん?
たとえば長方形ABCDの交点をXとして
ABXCDXを6活計とみなすのはあり?
562:132人目の素数さん
18/12/02 01:49:51.92 fdTrITVn.net
>>519
それはなしだな
563:132人目の素数さん
18/12/02 01:56:45.89 36l5kxLk.net
>>520
これはなしなのか…
だと(1)の方がさっぱりわからん。
なんか可能性みおとしてるのかな。
凸包はやっぱり4角形?
564:132人目の素数さん
18/12/02 02:09:34.62 B+C2Ix9O.net
>>520
以下の解釈であってる?
Pを平面上の凸とは限らない多角形とする。
ただし内角は180°だけは禁止し、その周は単純閉曲線(S^1と同相)とする。
帰納的にF[i]を定める。
F[1] = Pの頂点集合。
F[i+1] = { l と mの交点 | l、m は F[1]∪…∪F[i] から任意に選んだ2点を結ぶ直線}
(1) #P = 6、#∪F[i] < ∞ をみたすPが存在することを示せ。
(2) #P ≧ 7、#∪F[i] < ∞ となるPは存在しないことを示せ。
565:132人目の素数さん
18/12/02 02:44:44.87 D2g2qj2O.net
>>508
省略表記の否定比率リスト(合ってる自信はない)
@ 112
A 123
B 134 235
C 145 347 257 358
D 156 459 37.10 47.11 279 57.12 38.11 58.13
566:132人目の素数さん
18/12/02 03:03:38.91 s5Fyrcu3.net
>>509
URLリンク(integers.hatenablog.com)
これをヒントにできるかもね。線分を延長して直線にするのを許すか許さないかの違いはあるけど
567:132人目の素数さん
18/12/02 03:32:20.82 KWCNNez9.net
>>524
問題から出題の経緯までそっくりwww
もしかしてサイトの本人?
でも設定微妙にちがうよね?
>>509は対角線の延長の交点も追加するのありといってるけどそれだと
568:サイトの6点配置が2つ載ってるけど両方アウトになる。
569:132人目の素数さん
18/12/02 04:53:25.97 D2g2qj2O.net
>>504
やっと否定比率の途中過程が分かった
1 1:1:2
2 1:2:3
3 1:3:4
4 3:4:7
5 4:7:11
6 4:11:15
7 4:15:19
8 15:19:34
↓
73 15:994:1009
570:132人目の素数さん
18/12/02 08:34:17.53 Gu3V0Rky.net
正三角形ABCがある。正三角形ABCの内部に、点Aから5cm、点Bから12cm、点Cから13cm離れた場所で点Pがある。
この時、正三角形ABCの面積を中学数学のみで求めよ。
571:132人目の素数さん
18/12/02 08:35:26.50 Gu3V0Rky.net
あ、一応補足
正確には中学数学までの知識で求めよってことね
572:132人目の素数さん
18/12/02 11:26:56.11 br7NSo8H.net
>>527
maxima 先生に聞いたら結構な値になるな。
vol(ab,ac,ad,bc,bd,cd):=sqrt(determinant(matrix([0,1,1,1,1],[1,0,ab^2,ac^2,ad^2],[1,ab^2,0,bc^2,bd^2],[1,ac^2,bc^2,0,cd^2],[1,ad^2,bd^2,cd^2,0]))/8)/6;
solve(vol(5,12,13,x,x,x)=0);
[x=−sqrt(20*3^(3/2)+169),x=sqrt(20*3^(3/2)+169),x=−sqrt(169−20*3^(3/2)),x=sqrt(169−20*3^(3/2)),x=0]
573:132人目の素数さん
18/12/02 11:51:44.05 s5Fyrcu3.net
>>525
人違いだけど、こうまで一致してるとこの類いの問題は少なくともある界隈では結構有名ってことなのかねえ
まあ、問題設定違って答えも違うということは、おそらく生徒か>>509の問題の聞き間違えってことなのかな
574:132人目の素数さん
18/12/02 20:33:32.98 UHgyXCtV.net
# A,B,C,...,G,J,K 11人のうち、何人かが嘘つきで残りは正直者で
# 嘘つきは必ず嘘をつく。全員だれが嘘つきか知っている。
# 11人に「うそつきは何人いますか」と聞くと、下のように答えました。
# A:1人,B:2人,C:3人,...,G:9人,J:10人,K:12人
# 誰が嘘つきでしょうか
575:イナ
18/12/02 20:33:35.78 1noMUvpL.net
>>503あってんのか?
あってるよな。前>>497
ほかに答えないみたいだし。
576:これ教えて
18/12/02 21:08:41.95 Ee0VkDJ+.net
URLリンク(i.imgur.com)
577:132人目の素数さん
18/12/02 21:18:04.72 Ee0VkDJ+.net
>>533
返信というよりは補足です。
中学入試レベルなので3平方使用禁止です。
578:132人目の素数さん
18/12/02 21:51:41.65 8De20Fh0.net
>>532
この手の問題って全員が同等に他人の思考を推論できるというのが前提になってるね。あってんじゃね。
579:132人目の素数さん
18/12/02 22:06:21.06 EzxIt8h1.net
>>534
あれ?maxima先生の答え間違ってる?
580:132人目の素数さん
18/12/02 23:08:54.72 EzxIt8h1.net
>>531
> # A,B,C,...,G,J,K 11人のうち、何人かが嘘つきで残りは正直者で
H,Iはいないの?
書き忘れ?
> # A:1人,B:2人,C:3人,...,G:9人,J:10人,K:12人
これは
I:9人,J:10人,K:12人?
581:132人目の素数さん
18/12/02 23:09:17.00 Kvo5KSYd.net
>>531
K:11人の間違い。
結論は変わらない。
582:132人目の素数さん
18/12/02 23:10:48.91 Kvo5KSYd.net
>>537
すまん、Aから順に1から11人
583:132人目の素数さん
18/12/02 23:14:43.65 EzxIt8h1.net
>>538
まぁ全員言ってる事違うので正直者が二人以上いることはない。
問題文では全員嘘つきが禁止されてないので
K:12人
だと全員嘘つきの解もありえる。
K:11人
ならその可能性が消えるのでJだけが正直者が唯一の解。
584:132人目の素数さん
18/12/02 23:33:13.79 Kvo5KSYd.net
>>540
あたり。
n人にするとn-1番目が正直者になるね。
585:132人目の素数さん
18/12/03 03:28:39.04 IEuLNtWu.net
1枚だけページが破れた本がある。
破れていないページ番号を合計すると15000になる。
破れたページは何ページ目だろうか?
586:132人目の素数さん
18/12/03 03:46:05.03 emcKrz6P.net
25ページ・26ページ目
587:132人目の素数さん
18/12/03 09:18:36.26 nkVZQTbD.net
11人いる
588:イナ
18/12/03 10:34:23.13 QNCy2EJ5.net
>>533
ADとBFの交点をGとし、FからADに垂線Hを引く。
△BEF=□ABCD-△ABG-△BCE+△FGH
=18×18-6×18-18×9÷2+3×9÷2
=324-54-81+13.5
=202.5(cu)
前>>532
589:132人目の素数さん
18/12/03 11:19:57.61 f0Wte+g6.net
>>542
51P
590:132人目の素数さん
18/12/03 11:20:33.10 f0Wte+g6.net
SC 173 × 174 / 2 = 15,051
591:132人目の素数さん
18/12/03 12:01:48.76 se7yN58/.net
Prelude Data.List> head [x | x<-[1..], (div (x*(x+1)) 2) - x - x-1 > 15000]
175
Prelude Data.List> [(x,y)|x<-[1..174],y<-[1..x],div (x*(x+1)) 2 - y- y-1 == 15000]
[(173,25),(174,112)]
より最終ページが奇数が許されるなら 25, 26 ページ。
最終ページが必ず偶数なら解無し。
592:132人目の素数さん
18/12/03 12:46:13.13 E4TDocZk.net
臭いページを破ったんじゃないの?
全178ページで合計は 178*(178+1)/2 = 15931
破られたページは 465,466 ページ
593:132人目の素数さん
18/12/03 13:21:00.24 f0Wte+g6.net
破るページは1ページじゃないの?
594:132人目の素数さん
18/12/03 13:50:56.60 QN9IvGKv.net
1ページ破るから、表裏がなくなんのね。
ようやく意味がわかった。
595:132人目の素数さん
18/12/03 14:35:51.51 QN9IvGKv.net
>>549
178頁しかないのにどうやって465,466 ページを破るんだ?
日本の諺:無い袖は振れない
596:132人目の素数さん
18/12/03 14:56:23.08 QN9IvGKv.net
>>551
いつもの顰蹙、プログラム解
rip <- function(n){
page=(n*(n+1)/2-15000)%/%2
torn=ifelse(page%%2,page,0)
ifelse(0<torn & torn<n,torn,0)
}
rip=Vectorize(rip)
n*(n+1)/2-3=15000
1/2*(5*sqrt(4801)-1) # 172.7231
n*(n+1)/2-(2n-1)=15000
1/2*(3+7*sqrt(2449)) # 174.7058
> rip(173)
[1] 25
> rip(174)
[1] 0
597:132人目の素数さん
18/12/03 15:55:37.25 nkVZQTbD.net
112と113が抜けている
598:132人目の素数さん
18/12/03 16:08:47.30 wVNLgVcv.net
問題文には指定はないが、一枚に印刷されてるのは2k-1, 2kやろ?
599:132人目の素数さん
18/12/03 16:40:22.42 CykXOOQX.net
嘘つきがファジーとしてみました。
A,B,C,...,G,J,K 11人のうち、何人かが嘘つきで残りは正直者で
全員だれが嘘つきか知っている。
正直者は嘘をつかないが
嘘つきは嘘をつくこともつかないこともある。
11人に「うそつきは何人いますか」と聞くと、下のように答えました。
A:1人,B:2人,,...,J:10人,K:11人
誰が嘘つきでしょうか
600:132人目の素数さん
18/12/03 18:48:14.14 Cf5OYjjd.net
>>556
問題としてはこっちのほうが面白いね。
現実的だし。
601:132人目の素数さん
18/12/03 19:10:55.96 QN9IvGKv.net
>>556
11人が1, 2, 3, 4, 5, 5, 5, 5, 9, 9, 9 答えたとすると
嘘つきが必ず嘘をつくか、嘘もホントも答えるかで変わってくるね。
602:132人目の素数さん
18/12/03 19:21:43.31 nkVZQTbD.net
分かりやすい説明がありましたわ
「誰も」とか「誰か」の内容は文脈によって決まるので
ある場合にそれは、太郎と花子と次郎という想定が可能である
太郎が花子をねたみ
花子が次郎をねたみ
次郎が太郎をねたんでいる
そういった場合には、「誰もが誰かをねたんでいる」けれど
誰もからねたまれている「誰か」は存在しない
と、そういうことらしいわ
603:132人目の素数さん
18/12/03 21:46:47.16 CykXOOQX.net
>>558
嘘つきがファジーだとすると
この例だと
全員嘘つき以外に9と答えた3人のうち2人が正直者で
604:他が嘘つき という組合せも可能。 総当たりのプログラムではそれだけになったがプログラムに余り自信がない。 コイントスや待ち時間と違ってシミュレーションができない。
605:132人目の素数さん
18/12/03 22:29:09.47 Nmd0kpa1.net
>>545
Hどこからきたのですか?
606:132人目の素数さん
18/12/03 22:29:28.31 Nmd0kpa1.net
>>545
あ、なんでもないです
607:132人目の素数さん
18/12/03 22:35:04.53 Nmd0kpa1.net
>>545
あまり自信がないのですが、□ABCDの右上の三角形(恐らく)FDEはどちらへ?
608:132人目の素数さん
18/12/04 01:08:47.08 zMVauxBb.net
>>558のFuzzy versionのsolver
testimonies = [
(==1).length.(filter (==False)),
(==2).length.(filter (==False)),
(==3).length.(filter (==False)),
(==4).length.(filter (==False)),
(==5).length.(filter (==False)),
(==5).length.(filter (==False)),
(==5).length.(filter (==False)),
(==5).length.(filter (==False)),
(==9).length.(filter (==False)),
(==9).length.(filter (==False)),
(==9).length.(filter (==False))
]
isCompatible ts theCase = all (==True) $ zipWith (||) (map not theCase) (map (¥x -> x theCase) ts)
cases = (!! (length testimonies)) $ iterate (¥x-> [a:b|a<-[True,False],b<-x]) [[]]
main = mapM_ print [theCase | theCase<-cases, isCompatible testimonies theCase]
*Main> main
[False,False,False,False,False,False,False,False,True,True,False]
[False,False,False,False,False,False,False,False,True,False,True]
[False,False,False,False,False,False,False,False,False,True,True]
[False,False,False,False,False,False,False,False,False,False,False]
609:132人目の素数さん
18/12/04 08:34:38.33 QKKYvADK.net
>>564
いつもHaskellコードありがとうございます。
Rの結果(嘘つきを1で表示)と一致したので安心しました。
> liars <- function(Answer,Strict=TRUE){ # duplicate answer and/or case of all liars permitted
+ N=length(Answer)
+ arg=list()
+ for(i in 1:N) arg[[i]]=0:1
+ dat=do.call(expand.grid,arg) # expand.grid(0:1,0:1,0:1,...,0:1)
+ colnames(dat)=LETTERS[1:N]
+ check <- function(y,answer=Answer){
+ if(all(y==1)) {!all(1:N %in% answer)}
+ else{ # Strict: all honest answer compatible & not included in liar's anwer
+ if(Strict){all(answer[y==0]==sum(y)) & !(sum(y) %in% answer[y==1])}
+ else {all(answer[y==0]==sum(y))}
+ }
+ }
+ res=as.matrix(dat[apply(dat,1,check),])
+ rownames(res)=NULL
+ return(res)
+ }
>
> liars(c(1, 2, 3, 4, 5, 5, 5, 5, 9, 9, 9),Strict=FALSE)
A B C D E F G H I J K
[1,] 1 1 1 1 1 1 1 1 1 0 0
[2,] 1 1 1 1 1 1 1 1 0 1 0
[3,] 1 1 1 1 1 1 1 1 0 0 1
[4,] 1 1 1 1 1 1 1 1 1 1 1
610:132人目の素数さん
18/12/04 12:43:32.06 5n977z/C.net
>>558 の Fuzzy Version 位なら理詰めでもそんなに苦労はしないけど。
でも今回みたいな問題なら理詰めで解く事に拘ってもしょうがない気もする。
一致してる証言の数が最大4なので最低でも7人の嘘つきがいる。
よってその数が5人以下と証言しているA〜Iは嘘つきであることが確定する。
よって正直者がいるとすればI,J,Kのうちの何人かに限られるが、その数も証言により2と確定する。
よって正直者の集合は{J,K},{I,K},{I,J}のいずれかであることが必要。
逆にこのとき条件は満たされる。
全員嘘つきも条件を満たすので以上4つが解である。
611:132人目の素数さん
18/12/04 15:13:07.58 7f8uMrnq.net
答が7,7,7,7,8,8,8,9,9,10,11 だとこんな結果(1が嘘つき、0が正直者)
> liars(c(7,7,7,7,8,8,8,9,9,10,11),Strict=F)
A B C D E F G H I J K
1 1 1 1 1 1 1 1 1 1 0 1
2 1 1 1 1 1 1 1 0 0 1 1
3 1 1 1 1 0 0 0 1 1 1 1
4 0 0 0 0 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1
Answer 7 7 7 7 8 8 8 9 9 10 11
612:132人目の素数さん
18/12/04 21:10:26.55 ekJS
613:UZdS.net
614:132人目の素数さん
18/12/04 23:09:14.80 9sqWfWC3.net
>>568
イメージしにくかったら具体例で考えてみるというのはどうか。
徒歩は時速3キロ、自転車は時速20キロ、目的地は60キロ先。徒歩のみで行けば20時間かかる。
Bが自転車を30キロ地点で降りたとすると、そこまで1.5時間かかっているので、残りの行程は10時間、到着まで11.5時間となる。
Aは10時間かけて自転車のある30キロ地点に着き、それから残りの行程を10時間かけて進む。到着までは同じく11.5時間となる。
徒歩のみよりはどちらも早い。
615:132人目の素数さん
18/12/04 23:10:24.61 9sqWfWC3.net
>>569訂正
>Aは10時間かけて自転車のある30キロ地点に着き、それから残りの行程を1.5時間かけて進む。到着までは同じく11.5時間となる。
616:132人目の素数さん
18/12/05 06:47:04.15 kDWs7GYM.net
>>568
平均速度は歩行と自転車の調和平均になるのでいいかな。
617:132人目の素数さん
18/12/05 06:58:44.87 kDWs7GYM.net
歩行速度a, 自転車速度bで平均速度は1/((1/a+1/b)/2) =2ab/(a+b)
上の例だとの2*3*30/(3+20)=120/23=60/11.5=5.217
自転車での走行距離には無関係なんだな。
618:132人目の素数さん
18/12/05 07:04:26.84 kDWs7GYM.net
0 < a < b のときa < 2ab/(a+b)と言えるか、という問題に帰結。
あとは任せた。
619:132人目の素数さん
18/12/05 07:08:48.39 kDWs7GYM.net
>>573
すぐできた。
左辺-右辺={a(a+b)-2ab}/{a+b}=a(a-b)/(a+b)<0
620:132人目の素数さん
18/12/05 07:38:10.01 kDWs7GYM.net
>572
訂正
2*3*30/(3+20)=120/23=60/11.5=5.217
↓
2*3*20/(3+20)=120/23=60/11.5=5.217
621:132人目の素数さん
18/12/05 08:01:47.25 tR7lbHvn.net
>>572
スマソ、誤答の気がしてきた。
622:132人目の素数さん
18/12/05 08:27:13.33 tR7lbHvn.net
自転車での走行距離が長いほど平均時速は速くなるな。
623:132人目の素数さん
18/12/05 09:44:41.52 O2YJX1G3.net
>>569
上の例でL=60,x=30
0<a<b, 0<x<Lの時
a < (a b L)/(a x + b (L - x))を示せに帰着。
c=x/Lとおいて0<c<1
右辺=ab/((a-b)c+b)
左辺 - 右辺=a-ab/((a-b)c+b)=(ac (a - b))/(a c + b (1 - c))
分子<0,分母>0で不等式成立。
624:132人目の素数さん
18/12/05 13:04:57.15 NGe6N71c.net
>568
どちらかが常に歩いてはいるが、Bが自転車を置いた場所にAが辿り着く頃には、Bはもっと先の場所を歩いているわけだから、そのぶん時間が短縮されるのは自明。
625:132人目の素数さん
18/12/05 13:40:37.72 tR7lbHvn.net
>>579
自明というより、どれだけ短縮されるのが計算したくなるよ。
626:イナ
18/12/05 20:09:17.35 duwFGlVv.net
>>563
△FEDは考えなくていい。求められてない。求められてるのは△BEFの面積。
FもEもDもそこにあるだけ。どこへも行かない。
前>>545
GH=3、FH=HD=DE=9を作図する。
HDとFEの交点Mを中心に、
△DMEと△HMFは点対称だから、
△DMEは□ABCDから引かなくていい。
△DMEを引いてもどっちみち△BEFを求めるとき、
△HMFを足すことになるから。
627:132人目の素数さん
18/12/07 12:31:49.36 a4KQBFJb.net
S を集合とする。T は S の部分集合からなるある集合であり、包含関係に関して全順序をなす。すなわち、
A,B∈T ならば (A⊂B または B⊂A)
が成り立つ。
(1) S が可算集合の時、T の濃度はどのくらい大きくなれるか。
(2:未解決) S が非可算の場合はどうか。
628:132人目の素数さん
18/12/07 13:04:38.50 +DIQ+jRM.net
>>582
(1)はQの部分集合Aで
x∈A、y≦x⇒y∈A を満たすもの全体が連続体濃度になるので連続体濃度が答えかな?
629:132人目の素数さん
18/12/07 15:03:46.83 ppqSvBiP.net
>>583
正解
(2)は一般連続体仮説を採用すれば似たような方法で T=|2^S| となる T の存在が言えるけど、
果たして ZFC だけから出せるだろうか?というのが疑問になってできた問題
630:132人目の素数さん
18/12/10 01:33:32.73 MNYdlnCZ.net
kを自然数とする。
漸化式
x[1] = x[2] = 1
x[n+2] = x[n+1](x[n+1]+k)/x[n]
で定められる数列の全ての項は整数であることを示せ。
631:132人目の素数さん
18/12/10 08:38:45.57 nBAqzpCd.net
n人でじゃんけんを1回だけする。
1回のじゃんけんでの勝者の数をxとする。
xの期待値が最大となるnはいくつか?
632:132人目の素数さん
18/12/10 10:41:18.69 fcMs8kve.net
>>586
期待値は
Σ[k=1,n-1] C[n,k] (1/3)^(n-1)
= n ((2/3)^(n-1) - (1/3)^(n-1))
1≦n≦4においてはn=4のとき最大値 28/27。
n ≧ 2 のとき
(n+1) (2/3)^n
≦ n (2/3)^(n^1) (2n+2)/(3n)
より n≧5のとき
n(2/3)^(n-1) ≦ 5 (2/3)^4 = 80/81
∴n≧5のとき期待値<28/27。
633:132人目の素数さん
18/12/10 12:45:29.76 nBAqzpCd.net
>>587
予想通り即効で正解されてしまった。
面白くない問題でスマソm(__)m
次ページ最新レス表示スレッドの検索類似スレ一覧話題のニュースおまかせリスト▼オプションを表示暇つぶし2ch
18日前に更新/466 KB
担当:undef