- 249 名前:現代数学の系譜11 ガロア理論を読む [2012/11/04(日) 11:05:52.17 ]
- >>248
つづき www.kurims.kyoto-u.ac.jp/~motizuki/Kako%20to%20genzai%20no%20kenkyu.pdf 過去と現在の研究の報告 (2008-03-25 現在) (抜粋) 数体に対するTeichm¨uller 理論 2006 年の後半から、目指すべき理論の形がようやく固まってきて、その理論を記述するための執筆活動が本格的に始まった。 この理論の「形」とは、一言で言うと、巾零通常固有束付きの正標数の双曲曲線に対して展開するp 進Teichm¨uller 理論と、「パターン的に」類似的な理論を、一点抜き楕円曲線付きの数体に対して展開する という内容のものである。 因みに、ここに出てくる(数体上の)「一点抜き楕円曲線」の中に、その楕円曲線の上に展開されるHodge-Arakelov 理論が含まれている。 この理論のことを、「IU Teichm¨uller 理論」(=「IU Teich」)と呼ぶことにした。 IUTeich の方は、本質的にスキーム論の枠組の外(=「IU 的な枠組」)で定式化される 理論であるにも関わらず、調べれば調べるほどp 進Teichm¨uller 理論(=「pTeich」) との構造的、「パターン的」類似性が、意外と細かいところまで及ぶものであること に幾度となく感動を覚えたものである。 2006 年〜2008 年春の「IUTeich の準備」関連の論文は次の四篇である: (つづく)
|

|