[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 07/17 23:23 / Filesize : 462 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む7



243 名前:現代数学の系譜11 ガロア理論を読む [2012/11/04(日) 07:48:19.49 ]
>>242
つづき
ja.wikipedia.org/wiki/P%E9%80%B2%E6%95%B0
略式の解説 本節における p-進数の導入方法や記法は、数学的に正式なものではない。ただし、本節の解釈は、現実には有限の桁しか扱えない計算機の理論においては有用である。後述の p-進展開も参照。

以下の数の表記は p-進表記によるものとする。328.125 のような有限小数に、小数側に無限桁の数を加えて得られる 328.12587453… のようなものは実数のひとつである。
逆に、整数側に無限桁加えたもの、例えば …1246328.125 のようなものが p-進数であると解釈できる。
実数の場合とは逆に、小数側が有限桁でなければならない。p-進数の中でも、小数点以下がない …1246328 のようなものは p-進整数と呼ばれるものに対応する。

p-進数同士の足し算、引き算、掛け算は、p-進表記の有理数における通常のアルゴリズムを自然に無限桁に拡張することで得られ、割り算は掛け算の逆演算として定義される。
実数の場合とは異なり、p-進数においては、別途負の数を導入せずとも加法の逆元が存在する。たとえば2進数で 1 と …1111 を足すと 0 になるため、1 の加法逆元 -1 は …1111 に等しい。また、p-進数においては有限桁の小数範囲で必ず逆数が存在する。
たとえば、実数の世界においては、2進表記で 11 の逆数は 0.010101… であるのに対し、2進数の世界においては 11 の逆数は …010101011 である。

p は素数である必要があり、さもなくば2つの 0 でない p-進数の積が 0 になってしまうことや、逆数が存在しないことがある。p が素数であればそのようなことはなく、実数の加減乗除とよく似た性質を満たす。
p-進整数は p-進表記の整数を無限桁に拡張したものであるから、p-進整数の n + 1 桁目以降を「切り捨てる」事で有限桁の整数が得られる。
先に n + 1 桁目以降を切り捨ててから足し算、引き算、掛け算を行っても、先に足し算、引き算、掛け算を行ってから n + 1 桁目以降を切り捨てても同じ結果になる。

実数に距離の概念があるように、p-進数にも距離の概念(p-進距離)がある。例えば2つの実数 a, b の差が 0.0…0125… であるとき、連続する 0 の部分が長いほど数直線上の a と b は近い。
p-進数の場合、a と b の差が …1250…0 であるとき、連続する 0 の部分が長いほど a と b は近いとみなされる。
つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<462KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef