[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 07/17 23:23 / Filesize : 462 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む7



123 名前:現代数学の系譜11 ガロア理論を読む [2012/10/14(日) 06:07:39.79 ]
>>121
乙です
また、難しいことを

数式(および数学記法)が正確に表現できないことを承知で引用すると
1.IUTT-III, page 121

? hence, in particular, that
? |log(q)| ? CΘ ・ |log(q)|
for any CΘ ∈ R such that ? |log(Θ)| ? CΘ・|log(q)|. Since [one verifies immediately
that] |log(q)| ∈ R is positive, we thus conclude that CΘ ? ?1, as desired. In this
context, it is useful to recall that the above argument depends, in an essential way
[cf. the discussion of (ii), (vi)], on the theory of [EtTh], which does not admit
any evident generalization to the case of N-th tensor powers of Θ-pilot objects, for
N ? 2. That is to say, the log-volume of such an N-th tensor power of a Θ-pilot
object must always be computed as the result of multiplying the log-volume of the
original Θ-pilot object by N ? cf. Remark 2.1.1, (iv); [IUTchII], Remark 3.6.4,
(iii), (iv). In particular, although the analogue of the above argument for such
an N-th tensor power would lead to sharper inequalities than the inequalities
obtained here, it is difficult to see how to obtain such sharper inequalities via a
routine generalization of the above argument. In fact, as we shall see in [IUTchIV],
these sharper inequalities are known to be false [cf. [IUTchIV], Remark 2.3.2, (ii)].






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<462KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef