- 788 名前:132人目の素数さん mailto:sage [2012/09/14(金) 02:57:21.55 ]
- 図形の問題なのですが、図がないものになります。
問:三角形ABCの外心をO,重心をG、垂心をHとしたとき、いつでも成り立つ式は以下のうちどれか?(選択式の問題です) 答えは 3OG=OH になるのですが、解説で(やはり図なし)定理より @ - 3OG=OA+OB+OC 、 A - OH=OA+OB+OC と出てきてきます。 @は定理だから、そのまま覚えようと思うのですがAに関して 外心Oと三角形の各頂点ABCをつなぐ線分OA OB OCは外接円の半径になると考えるのですが OH=OA+OB+OC=3OA。外接円の半径の三倍?ということになるのでしょうか? 垂心Hも三角形内にある点になると思うので、三角形内にある線分OHがその三角形の外接円の半径の三倍になるとは思えないのです。 おそらくどこか私がどこか・何かを勘違いしているのだと思うのですが、どこかわからず困っております。 何がおかしいのかわかる方いませんか?
|

|