- 554 名前:132人目の素数さん mailto:sage [2012/09/11(火) 03:33:32.61 ]
- >>512
(1) lim_[x→π/2] (π-2x ) / ( ( 1-sin(x) ) tan(x) ) π/2-x=h とおくと x→π/2 のとき h→0 分子は 2h sin(x)=sin(π/2-h)=cos(h) tan(x)=sin(x) / cos(x)= sin(π/2-h) / cos(π/2-h)=cos(h) / sin(h) 与式 =lim_[h→0] (2h) / ( (1-cos(h)) (cos(h)/sin(h)) ) =lim_[h→0] (2h) tan(h) / ( 1-cos(h) ) 有理化して =lim_[h→0] (2h) tan(h) (1+cos(h)) / ( 1-cos(h)^2 ) =lim_[h→0] (2h) tan(h) (1+cos(h)) / ( sin(h)^2 ) 分母分子に (1/h^2) を掛けて =lim_[h→0] 2(tan(h)/h) (1+cos(h)) / ( (sin(h)/h)^2 ) h→0 ならば tan(h)/h=1、cos(h)=1、sin(h)/h=1 = 2 (1) (1+1) / 1 =4
|

|