[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 12/18 22:02 / Filesize : 490 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む6



263 名前:現代数学の系譜11 ガロア理論を読む [2012/08/19(日) 07:27:17.57 ]
>>262
対称性と群の関係

ja.wikipedia.org/wiki/%E7%82%B9%E7%BE%A4
数学における点群(てんぐん、英: point group)とはある図形の形を保ったまま行う移動操作のうち、少なくとも1つの不動点を持つものを元とする群のこと。
このような群によって物理学や化学における分子や結晶の対称性を数学的に記述することができる。そのような応用との関係からふつう3次元ユークリッド空間における変換の範疇で考えることが多い。

対称操作
正四面体を、ある面の重心を通る垂線の回りに120度回転させてももとの正四面体と区別はつかない。このようにある図形に対して、もとの図形と区別がつかないように移動を行う操作を対称操作という。
このような、3次元ユークリッド空間における対称操作には以下の7つの種類がある。
1.恒等操作 - 何の移動もしない。
2.回転操作 - 図形上のすべての点をある軸(対称軸)に対して回転させる。
3.鏡映操作 - 図形上のすべての点をある面(対称面)について面対称に移動させる。
4.反転操作 - 図形上のすべての点をある点(対称中心)について点対称に移動させる。
5.回映操作 - 図形上のすべての点をある軸(回映軸)に対して回転させた後、その軸に垂直な面について面対称に移動させる。
6.回反操作 - 図形上のすべての点をある軸(回反軸)に対して回転させた後、その軸上の一点について点対称に移動させる。
7.並進操作 - 図形上のすべての点を平行移動させる

この中で並進操作以外では少なくとも1つの点が不動点となる。
恒等操作では図形上のすべての点が、回転操作では回転軸上の点が、鏡映操作では鏡映面上の点が、反転操作では対称中心が、回映操作では回映軸上の1点が、回反操作では回反軸上の1点が不動点となっている。
それぞれの操作を特徴付けている対称軸、対称面、対称中心、回映軸、回反軸は対称要素とよばれる。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<490KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef