[表示 : 全て 最新50 1-99 101- 201- 301- 401- 2chのread.cgiへ]
Update time : 05/29 03:38 / Filesize : 461 KB / Number-of Response : 466
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む



100 名前:現代数学の系譜11 ガロア理論を読む [2012/04/30(月) 06:49:13.39 ]
>>99
(つづき)
6.ガロア群を導くやり方はこうだ
>>169
V=Aa+Bb+Cc+・・を用いて
a,b,c・・・は、Vの有理式で表される
これをガロア論文>>3では、
a=φ(V),b=φ1(V),c=φ2(V)・・・ と表している
矢ケ部では、θを使っている

ここで、V→V'などの置換で
a'=φ(V'),b'=φ1(V'),c'=φ2(V')・・・ の根の置換が生じる(a'=φ(V')がまた元の方程式の根になることは証明があるので、どちらかの本を見ること)

一般の5次方程式ならこの置換はV→Vの恒等置換も含めて120個。つまり、5次対称群S5になる
(引用おわり)

7.では、方程式の群が対称群でない場合>>152はどうなるか?
>>171
>一般の5次方程式ならF(x)は既約で、120次元の方程式

ここが、方程式の群が対称群でない場合崩れる
つまり、根の置換で異なる値V'、V''、V'''・・・を全て集めてF(x)=(x-V)(x-V')(x-V'')(x-V''')・・・を作る
F(x)の係数は、元の体(それが有理数体QならQに)

ここで、方程式の群が例えば巡回群ならF(x)は可約になって、有理数体Qの中で因数分解できることになる
そして、F(x)を因数分解して既約にした方程式F'(x)(と書く)の方程式の群は巡回群。というか、巡回群になるまで因数分解できると言った方が分かりやすいかも

つまり、最初から120次元の方程式を作らなくっても巡回群の分だけ置換で異なる値V'、V''、V'''・・・を集めれば良かったと
だが、理論構築としては、一般の方程式の場合=対称群、特別の場合=対称群の部分群 という流れを作るのが綺麗なんだ
(つづく)






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<461KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef